1,054 research outputs found

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement

    An engineered escherichia coli strain with synthetic metabolism for in‐cell production of translationally active methionine derivatives

    Get PDF
    In the last decades, it has become clear that the canonical amino acid repertoire codified by the universal genetic code is not up to the needs of emerging biotechnologies. For this reason, extensive genetic code re‐engineering is essential to expand the scope of ribosomal protein translation, leading to reprogrammed microbial cells equipped with an alternative biochemical alphabet to be exploited as potential factories for biotechnological purposes. The prerequisite for this to happen is a continuous intracellular supply of noncanonical amino acids through synthetic metabolism from simple and cheap precursors. We have engineered an Escherichia coli bacterial system that fulfills these requirements through reconfiguration of the methionine biosynthetic pathway and the introduction of an exogenous direct trans‐sulfuration pathway. Our metabolic scheme operates in vivo, rescuing intermediates from core cell metabolism and combining them with small bio‐orthogonal compounds. Our reprogrammed E. coli strain is capable of the in‐cell production of L‐azidohomoalanine, which is directly incorporated into proteins in response to methionine codons. We thereby constructed a prototype suitable for economic, versatile, green sustainable chemistry, pushing towards enzyme chemistry and biotechnology‐based production

    A new subspace method for blind estimation of selective MIMO-STBC channels

    Get PDF
    In this paper, a new technique for the blind estimation of frequency and/or time-selective multiple-input multiple-output (MIMO) channels under space-time block coding (STBC) transmissions is presented. The proposed method relies on a basis expansion model (BEM) of the MIMO channel, which reduces the number of parameters to be estimated, and includes many practical STBC-based transmission scenarios, such as STBC-orthogonal frequency division multiplexing (OFDM), space-frequency block coding (SFBC), time-reversal STBC, and time-varying STBC encoded systems. Inspired by the unconstrained blind maximum likelihood (UML) decoder, the proposed criterion is a subspace method that efficiently exploits all the information provided by the STBC structure, as well as by the reduced-rank representation of the MIMO channel. The method, which is independent of the specific signal constellation, is able to blindly recover the MIMO channel within a small number of available blocks at the receiver side. In fact, for some particular cases of interest such as orthogonal STBC-OFDM schemes, the proposed technique blindly identifies the channel using just one data block. The complexity of the proposed approach reduces to the solution of a generalized eigenvalue (GEV) problem and its computational cost is linear in the number of sub-channels. An identifiability analysis and some numerical examples illustrating the performance of the proposed algorithm are also providedThis work was supported by the Spanish Government under projects TEC2007-68020-C04-02/TCM (MultiMIMO) and CONSOLIDER-INGENIO 2010 CSD2008-00010 (COMONSENS)

    MycoBank gearing up for new horizons.

    Get PDF
    MycoBank, a registration system for fungi established in 2004 to capture all taxonomic novelties, acts as a coordination hub between repositories such as Index Fungorum and Fungal Names. Since January 2013, registration of fungal names is a mandatory requirement for valid publication under the International Code of Nomenclature for algae, fungi and plants (ICN). This review explains the database innovations that have been implemented over the past few years, and discusses new features such as advanced queries, registration of typification events (MBT numbers for lecto, epi- and neotypes), the multi-lingual database interface, the nomenclature discussion forum, annotation system, and web services with links to third parties. MycoBank has also introduced novel identification services, linking DNA sequence data to numerous related databases to enable intelligent search queries. Although MycoBank fills an important void for taxon registration, challenges for the future remain to improve links between taxonomic names and DNA data, and to also introduce a formal system for naming fungi known from DNA sequence data only. To further improve the quality of MycoBank data, remote access will now allow registered mycologists to act as MycoBank curators, using Citrix software

    Prognostic value of electrocardiographic detection of unrecognized myocardial infarction in persons with stable coronary artery disease: data from the Heart and Soul Study

    Get PDF
    Unrecognized myocardial infarction (MI) carries a poor prognosis in the general population, but its prognostic value is less clear in high-risk patients. We sought to determine whether Q waves on electrocardiogram (ECG), suggestive of unrecognized MI, predict cardiovascular events in patients with stable coronary artery disease (CAD), but without a prior history of MI. We studied 462 patients enrolled in the Heart and Soul Study with stable CAD but without a prior history of MI. All patients had baseline ECGs. The baseline prevalence of unrecognized myocardial infarction was 36%. After a mean of 6.3 years of follow-up, there were a total of 141 cardiovascular events. The presence of Q waves in any ECG lead territory predicted cardiovascular events before (unadjusted HR 1.41, 95% CI 1.01-1.97) and after adjustment for demographics, medical history, diastolic function, and ejection fraction (HR 1.55, 95% CI 1.06-2.26). This association was partly attenuated after adjustment for the presence of inducible ischemia at baseline (HR 1.43, 95% CI 0.96-2.12). When specific territories were analyzed separately, Q waves in anterior leads were predictive of cardiovascular events in both unadjusted and adjusted models (adjusted HR 1.85, 95% CI 1.14-3.00), and this association was partly attenuated after adjustment for inducible ischemia. In conclusion, in patients with CAD but no history of prior MI, the presence of any Q waves or anterior Q waves alone is independently predictive of adverse cardiovascular events

    The B -> X_s gamma gamma rare decay

    Full text link
    The rare decay B -> X_s gamma gamma is studied in the Standard Model (SM) and in two different versions (Model I and Model II) of the Two Higgs Doublet Model (2HDM). In the SM the branching ratio into ``hard photons'' is about 10^(-7) and can be appreciably different in the 2HDM. We also introduce a forward-backward asymmetry which gives an additional handle to discriminate different models.Comment: 12 pages, 5 EPS figures, requires Latex2e, epsf.sty, cite.sty and amssymb.st

    SMG6 localizes to the chromatoid body and shapes the male germ cell transcriptome to drive spermatogenesis

    Get PDF
    Nonsense-mediated RNA decay (NMD) is a highly conserved and selective RNA turnover pathway that depends on the endonuclease SMG6. Here, we show that SMG6 is essential for male germ cell differentiation in mice. Germ-cell conditional knockout (cKO) of Smg6 induces extensive transcriptome misregulation, including a failure to eliminate meiotically expressed transcripts in early haploid cells, and accumulation of NMD target mRNAs with long 3 ' untranslated regions (UTRs). Loss of SMG6 in the male germline results in complete arrest of spermatogenesis at the early haploid cell stage. We find that SMG6 is strikingly enriched in the chromatoid body (CB), a specialized cytoplasmic granule in male germ cells also harboring PIWI-interacting RNAs (piRNAs) and the piRNA-binding protein PIWIL1. This raises the possibility that SMG6 and the piRNA pathway function together, which is supported by several findings, including that Piwil1-KO mice phenocopy Smg6-cKO mice and that SMG6 and PIWIL1 co-regulate many genes in round spermatids. Together, our results demonstrate that SMG6 is an essential regulator of the male germline transcriptome, and highlight the CB as a molecular platform coordinating RNA regulatory pathways to control sperm production and fertility.Peer reviewe

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+ee^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0KK+D^0 \to K^- K^+, π+π\pi^+ \pi^-, KK+π+πK^- K^+ \pi^+ \pi^- and π+π+ππ\pi^+ \pi^+ \pi^- \pi^-, D+K0ˉK+D^+ \to \bar{K^0} K^+, KK+π+K^- K^+ \pi^+ and ππ+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    Predictive models for fatigue property of laser powder bed fusion stainless steel 316L

    Get PDF
    The selection of appropriate processing parameters is crucial for producing parts with target properties via the laser powder bed fusion (L-PBF) process. In this work, the fatigue properties of L-PBF stainless steel 316L under controlled changes in laser power and scan speed were studied by employing the statistical response surface method. Processing regions corresponding to different fatigue failure mechanisms were identified. The optimum fatigue properties are associated with crack initiation from microstructure defect, which, by acting as the weakest link, creates enhanced porosity-tolerance at applied stress approaching the fatigue limit. Deviations from the optimum processing condition lead to strength degradation and porosity-driven cracking. Based on the observed relations between microstructural features and failure behaviour, a processing-independent fatigue prediction model was proposed. The microstructure-driven failure was modelled by a reference S-N curve where the intrinsic effect of microstructure inhomogeneity was accounted for by applying a reduction factor on fatigue life. For the porosity-driven failure, high cycle fatigue life follows an inverse-square-root relation with porosity fraction. This relation was incorporated into the Basquin equation for predicting the fatigue strength parameters.Accepted versio
    corecore