38 research outputs found

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe

    Helium burning and neutron sources in the stars

    Get PDF
    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple-alfa process, and oxygen, through the 12C(alfa, gamma)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C(alfa, n)16O and the 22Ne(alfa, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories

    Effects of invasive alien plants on fire regimes

    Get PDF
    Plant invasions are widely recognized as significant threats to biodiversity conservation worldwide. One way invasions can affect native ecosystems is by changing fuel properties, which can in turn affect fire behavior and, ultimately, alter fire regime characteristics such as frequency, intensity, extent, type, and seasonality of fire. If the regime changes subsequently promote the dominance of the invaders, then an invasive plant-fire regime cycle can be established. As more ecosystem components and interactions are altered, restoration of preinvasion conditions becomes more difficult. Restoration may require managing fuel conditions, fire regimes, native plant communities, and other ecosystem properties in addition to the invaders that caused the changes in the first place. We present a multiphase model describing the interrelationships between plant invaders and fire regimes, provide a system for evaluating the relative effects of invaders and prioritizing them for control, and recommend ways to restore preinvasion fire regime properties

    Tectono-stratigraphic framework of Neoproterozoic to Cambrian strata, west-central U.S.: Protracted rifting, glaciation, and evolution of the North American Cordilleran margin

    No full text
    Stratigraphic, geochronologic, and geochemical patterns of Neoproterozoic to Cambrian sedimentary and volcanic rocks in Utah, Nevada, and SE Idaho record a dynamically evolving landscape along the North American Cordillera margin, which included: (1) initial development of intracratonic basins with deposition of siliciclastic strata of the Uinta Mountain Group from ~. 770 to 740. Ma; (2) early rifting and volcanism along a N-S (present day geographic coordinates) basin system with deposition of diamictite-bearing strata of the Perry Canyon and related formations from ~. 720 to 660. Ma; (3) early, broad subsidence with deposition of mature siliciclastic strata of the lower Brigham and McCoy Creek groups from ~. 660 to 580. Ma; (4) final rifting, volcanism, and transition to drift with deposition of variably immature siliciclastic strata of the Prospect Mountain and correlative formations from ~. 570 to 520. Ma; and (5) regional subsidence along a passive margin with deposition of Middle Cambrian to Devonian carbonate-rich strata. The Uinta Mountain Group comprises fluvial to marine, feldspathic to quartzose sandstone, conglomerate, and mudstone, with detrital zircon (DZ) patterns recording a mix of local basement sources to the N and distal Laurentian sources to the SE. The lower Perry Canyon and related formations contain variably feldspathic sandstone, quartz-pebble diamictite deposited during an older glacial episode, and mudstone, with DZ patterns recording a mix of distal sources, local basement sources, and sediment recycling during early rifting. The upper Perry Canyon and related formations contain mafic volcanic rocks, polymict diamictite deposited during a younger glacial episode, volcaniclastic wacke, and mudstone, with DZ patterns recording local basement sources along an evolving rift margin and felsic volcanism from ~. 700 to 670. Ma. Mafic volcanic rocks and trachyte to rhyolite clasts in diamictite have geochemical signatures typical of continental rifting. The lower Brigham and McCoy Creek groups contain mostly mature quartz arenite deposited in shallow marine environments, with DZ patterns recording distal Laurentian sources. The base of the Prospect Mountain and correlative formations is marked by an influx of feldspathic, coarse-grained sediment derived from local basement sources and ~. 570-540. Ma basalt volcanism, which was followed by deposition of subfeldspathic strata with dominant 1.7-1.8. Ga DZ grains, recording sources from the SE rift margin and a marked decrease in distal sources during uplift of the Transcontinental Arch. Overlying carbonate-rich strata were deposited in shallow marine settings, with episodic influx of siliciclastic sediment derived from basement exposed during regressions. Stratigraphic thickness-age relations of Neoproterozoic to early Paleozoic strata are consistent with two episodes of rifting concentrated at ca. 700-670. Ma and 570-540. Ma along western Laurentia, leading to final development of a passive margin. Early rifting was incomplete with an estimated 25-40% extension of initially thick lithosphere that was weakened by igneous activity. Final rifting of previously thinned lithosphere involved an estimated 20-35% additional extension, renewed igneous activity, and thermal thinning of mantle lithosphere, with localized extension culminating in final separation along the continental margin. Stratigraphic, geochronologic, and available paleomagnetic data are consistent with linkage of western Laurentia to Australia-East Antarctica within Rodinia, followed by protracted rifting and drift during Cambrian time

    One size does not fit all: Monitoring faecal glucocorticoid metabolites in marsupials

    No full text
    Marsupial research, conservation, and management can benefit greatly from knowledge about glucocorticoid (GC) secretion patterns because GCs influence numerous aspects of physiology and play a crucial role in regulating an animal's response to stressors. Faecal glucocorticoid metabolites (FGM) offer a noninvasive tool for tracking changes in GCs over time. To date, there are relatively few validated assays for marsupials compared with other taxa, and those that have been published generally test only one assay. However, different assays can yield very different signals of adrenal activity. The goal of this study was to compare the performance of five different enzyme immunoassays (EIAs) for monitoring adrenocortical activity via FGM in 13 marsupial species. We monitored FGM response to two types of events: biological stressors (e.g., transport, novel environment) and pharmacological stimulation (ACTH injection). For each individual animal and assay, FGM peaks were identified using the iterative baseline approach. Performance of the EIAs for each species was evaluated by determining (1) the percent of individuals with a detectable peak 0.125-4.5 days post-event, and (2) the biological sensitivity of the assay as measured by strength of the post-event response relative to baseline variability (Z-score). Assays were defined as successful if they detected a peak in at least 50% of the individuals and the mean species response had a ZP2. By this criterion, at least one assay was successful in 10 of the 13 species, but the best performing assay varied amo g species, even those species that were closely related. Furthermore, the ability to confidently assess assay performance was influenced by the experimental protocols used. We discuss the implications of our findings for biological validation studies
    corecore