1,748 research outputs found
Atomic interaction effects in the superradiant light scattering from a Bose-Einstein condensate
We investigate the effects of the atomic interaction in the Superradiant
Rayleigh scattering from a Bose-Einstein condensate driven by a far-detuned
laser beam. We show that for a homogeneous atomic sample the atomic interaction
has only a dispersive effect, whereas in the inhomogeneous case it may increase
the decay of the matter-wave grating.Comment: 12 pages, 4 figures, presented to the XII International Laser Physics
Workshop, August 24-29, Hamburg, to be published in Laser Physic
Cavity atom optics and the `free atom laser'
The trap environment in which Bose-Einstein condensates are generated and/or
stored strongly influences the way they interact with light. The situation is
analogous to cavity QED in quantum optics, except that in the present case, one
tailors the matter-wave mode density rather than the density of modes of the
optical field. Just as in QED, for short times, the atoms do not sense the trap
and propagate as in free space. After times long enough that recoiling atoms
can probe the trap environment, however, the way condensates and light fields
are mutually influenced differs significantly from the free-space situation. We
use as an example the condensate collective atomic recoil laser, which is the
atomic matter-wave analog of the free-electron laser.Comment: To be published in a special edition of Optics Communications in
honor of the 60th birthday of Marlan Scull
Input-output theory for fermions in an atom cavity
We generalize the quantum optical input-output theory developed for optical
cavities to ultracold fermionic atoms confined in a trapping potential, which
forms an "atom cavity". In order to account for the Pauli exclusion principle,
quantum Langevin equations for all cavity modes are derived. The dissipative
part of these multi-mode Langevin equations includes a coupling between cavity
modes. We also derive a set of boundary conditions for the Fermi field that
relate the output fields to the input fields and the field radiated by the
cavity. Starting from a constant uniform current of fermions incident on one
side of the cavity, we use the boundary conditions to calculate the occupation
numbers and current density for the fermions that are reflected and transmitted
by the cavity
Creating Bell states and decoherence effects in quantum dots system
We show how to improve the efficiency for preparing Bell states in coupled
two quantum dots system. A measurement to the state of driven quantum laser
field leads to wave function collapse. This results in highly efficiency
preparation of Bell states. The effect of decoherence on the efficiency of
generating Bell states is also discussed in this paper. The results show that
the decoherence does not affect the relative weight of and in the
output state, but the efficiency of finding Bell states.Comment: 4 pages, 2figures, corrected some typo
Recoil-Induced-Resonances in Nonlinear, Ground-State, Pump-Probe Spectroscopy
A theory of pump-probe spectroscopy is developed in which optical fields
drive two-photon Raman transitions between ground states of an ensemble of
three-level atoms. Effects related to the recoil the atoms undergo
as a result of their interactions with the fields are fully accounted for in
this theory. The linear absorption coefficient of a weak probe field in the
presence of two pump fields of arbitrary strength is calculated. For subrecoil
cooled atoms, the spectrum consists of eight absorption lines and eight
emission lines. In the limit that , where and
are the Rabi frequencies of the two pump fields, one recovers the
absorption spectrum for a probe field interacting with an effective two-level
atom in the presence of a single pump field. However when , new interference effects arise that allow one to selectively turn on
and off some of these recoil induced resonances.Comment: 30 pages, 8 figures. RevTex. Submitted to Phys. Rev. A, Revised
versio
Higher-order mutual coherence of optical and matter waves
We use an operational approach to discuss ways to measure the higher-order
cross-correlations between optical and matter-wave fields. We pay particular
attention to the fact that atomic fields actually consist of composite
particles that can easily be separated into their basic constituents by a
detection process such as photoionization. In the case of bosonic fields, that
we specifically consider here, this leads to the appearance in the detection
signal of exchange contributions due to both the composite bosonic field and
its individual fermionic constituents. We also show how time-gated counting
schemes allow to isolate specific contributions to the signal, in particular
involving different orderings of the Schr\"odinger and Maxwell fields.Comment: 11 pages, 2 figure
ATLASGAL - towards a complete sample of massive star forming clumps
By matching infrared-selected, massive young stellar objects (MYSOs) and compact HII regions in the Red MSX Source survey to massive clumps found in the submillimetre ATLASGAL (APEX Telescope Large Area Survey of the Galaxy) survey, we have identified ~1000 embedded young massive stars between 280{ring operator} <lPeer reviewedFinal Accepted Versio
Entanglement between motional states of a single trapped ion and light
We propose a generation method of Bell-type states involving light and the
vibrational motion of a single trapped ion. The trap itself is supposed to be
placed inside a high- cavity sustaining a single mode, quantized
electromagnetic field. Entangled light-motional states may be readily generated
if a conditional measurement of the ion's internal electronic state is made
after an appropriate interaction time and a suitable preparation of the initial
state. We show that all four Bell states may be generated using different
motional sidebands (either blue or red), as well as adequate ionic relative
phases.Comment: 4 pages, LaTe
Electroweak Baryogenesis: Concrete in a SUSY Model with a Gauge Singlet
SUSY models with a gauge singlet easily allow for a strong first order
electroweak phase transition (EWPT) if the vevs of the singlet and Higgs fields
are of comparable size. We discuss the profile of the stationary expanding
bubble wall and CP-violation in the effective potential, in particular
transitional CP-violation inside the bubble wall during the EWPT. The
dispersion relations for charginos contain CP-violating terms in the WKB
approximation. These enter as source terms in the Boltzmann equations for the
(particle--antiparticle) chemical potentials and fuel the creation of a baryon
asymmetry through the weak sphaleron in the hot phase. This is worked out for
concrete parameters.Comment: 46 pages, LaTeX, 11 figures, discussion of source terms and transport
equations modified, version to appear in Nucl. Phys.
Interference of a Tonks-Girardeau Gas on a Ring
We study the quantum dynamics of a one-dimensional gas of impenetrable bosons
on a ring, and investigate the interference that results when an initially
trapped gas localized on one side of the ring is released, split via an
optical-dipole grating, and recombined on the other side of the ring. Large
visibility interference fringes arise when the wavevector of the optical dipole
grating is larger than the effective Fermi wavevector of the initial gas.Comment: 7 pages, 3 figure
- …
