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Abstract

We investigate the effects of the atomic interaction in the Superradiant Rayleigh scattering from

a Bose-Einstein condensate driven by a far-detuned laser beam. We show that for a homogeneous

atomic sample the atomic interaction has only a dispersive effect, whereas in the inhomogeneous

case it may increase the decay of the matter-wave grating.
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I. INTRODUCTION

The long coherence time of the Bose-Einstein condensate (BEC), now routinely produced

in many laboratories, offers the possibility to study the collective motion induced by exter-

nal radiation beams [1]. In particular, a single far-off resonance laser sent on an elongated

BEC produces superradiant Rayleigh scattering [2, 3, 4], generating coherent backscattered

radiation and splitting the condensate into fractions moving at velocities differing by multi-

ples of 2h̄k/m, where k = ω/c is the wave-vector of the laser incident along the symmetry

axis of the condensate, ω is the laser frequency and m is the atomic mass. Superradiant

Rayleigh scattering from a BEC is the quantum analog of the collective atomic recoil laser

(CARL) [5] in which the emitted radiation is not confined in a high-Q ring cavity [6]. The

complete absence in a BEC of Doppler broadening due to thermal motion allows for a regime

in which the atoms scatter a single laser photon and recoil with an extra momentum of 2h̄k

in the direction of the incident photon. The number of scattered photons and the amplitude

of the density grating resulting from the interference between the two atomic wavepackets

with momentum difference 2h̄k are exponentially enhanced via the CARL instability [7]. In

the absence of any mechanism of atomic dephasing, the process is sequential [2, 8], with a

complete transfer of atoms, after the superradiant process, from the original motional state

with momentum p to a state with a momentum p + 2h̄k. However, in a real BEC several

mechanisms contribute to the decay of the coherence between the two momentum states.

Some of them are due to the decoherence induced by spontaneous emission [9] or phase

diffusion [4]. The main characteristic of this kind of decoherence is irreversibility. Other

mechanisms arise from inhomogeneous broadening, as those due to a finite size of the con-

densate wavefunction, responsible for a broadening of the atomic momentum distribution,

and from mean-field broadening due to the atomic interaction [10]. It has been recently

suggested that the dephasing due to inhomogeneous broadening can be reversed applying,

after the superradiant scattering process, a Bragg pulse of area π inducing a superradiant

echo and a further tranfer of the atoms to the final momentum state [11]. In this paper we

investigate the effects of the mean-field atomic interaction on the superradiant scattering

process.

2



II. BASIC MODEL

We consider an elongated Bose-Einstein condensate driven by a single laser incident along

the positive direction of the symmetry axis z of the condensate. The laser is far-detuned

from the atomic resonance, so that radiation pressure due to absorption and subsequent

random incoherent, isotropic emission of a photon, can be neglected. In this regime, the

atoms backscatter photons at frequency ωs and wave vector ks = ωs/c ≈ k, recoiling with a

momentum 2h̄k along the same direction of the incident laser beam.

In a simplified 1D description of the process along the axis z, the evolution of the matter-

wave field Ψ(z, t) and of the dimensionless amplitude a(t) of the scattered radiation is

determined by the following self-consistent equations:

i
∂Ψ

∂t
= −ωr

∂2Ψ

∂θ2
+ ig

[

a∗ei(θ−δt) − c.c.
]

Ψ + 2πβ|Ψ|2Ψ (1)

da

dt
= gN

∫

dθ|Ψ|2ei(θ−δt) − κa. (2)

where θ = 2kz, a = (ǫ0V/2h̄ωs)
1/2E is the dimensionless electric field amplitude of the

scattered beam with frequency ωs, ωr = 2h̄k2/m is the two-photon recoil frequency, g =

(Ω/2∆0)(ωd2/2h̄ǫ0V )1/2 is the coupling constant, Ω is the Rabi frequency of the laser beam

of frequency ω = ck, detuned from the atomic resonance frequency ω0 by ∆0 = ω − ω0, d is

the electric dipole moment of the atom along the laser polarization direction, V is the volume

of the condensate containing N atoms, δ = ω − ωs and ǫ0 is the permittivity of the free

space. The second term on the right hand side of Eq.(1) is the self-consistent optical lattice,

resulting from the interference between the laser and the backscattered radiation, whose

amplitude is amplified by the matter-wave grating described by the first term on the right

hand side of Eq.(2). The matter-wave field Ψ is normalized to one, i.e.
∫

dθ|Ψ(θ, t)|2 = 1, and

the last term on the right hand side of Eq.(1) describes the atomic interaction due to binary

collisions, where β = 4h̄kasN/mΣ, as is the scattering length and Σ is the condensate cross

section. Eq.(2) has been written in the “mean-field” limit, which models the propagation

effects of the light by replacing the nonuniform electric field by an average value and by

adding to the equation a damping term with decay constant κ ≈ c/2L, where L is the

condensate length and c is the speed of light in vacuum.
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III. HOMOGENEOUS CASE

If the condensate is much longer than the radiation wavelength and the density is uniform,

then periodic boundary conditions can be assumed on θ and the wavefunction can be written

as a Fourier series

Ψ(θ, t) =
∑

n

cn(t)un(θ)e
−inδt, (3)

where un(θ) = (1/
√

2π) exp(inθ) are momentum eigenfunctions with eigenvalues pz =

n(2h̄k). Using Eq.(3), Eqs.(1) and (2) reduce to an infinite set of ordinary differential

equations,

ċn = −iδncn + g(a∗cn−1 − acn+1) − iβ
∑

m,l

cmclc
∗

m+l−n (4)

ȧ = gN
∑

n

cnc∗n+1 − κa, (5)

where δn = n2ωr − nδ and the dot indicates the time derivative.

A. Two-level approximation

Assuming that the only two momentum levels involved in the process are the initial level

n and the final level n + 1, Eq.(4) and (5) reduce to:

ċn ≈ −i
[

δn + β
(

|cn|2 + 2|cn+1|2
)]

cn − gacn+1 (6)

ċn+1 ≈ −i
[

δn+1 + β
(

2|cn|2 + |cn+1|2
)]

cn+1 + ga∗cn (7)

ȧ ≈ gNcnc
∗

n+1 − κa. (8)

Defining S = cnc
∗

n+1 and W = |cn|2 − |cn+1|2, we obtain from Eqs.(6)-(8):

Ṡ = −i (∆ − βW )S + gaW − γS (9)

Ẇ = −2g (aS∗ + c.c.) (10)

ȧ = gNS − κa, (11)

where ∆ = δn − δn+1 = δ − ωr(2n + 1) and we have introduced a damping term in Eq.(9),

to account for the decay of the coherence between the two motional states n and n + 1. We

note that when the atomic interaction is neglected (β = 0), ∆ = 0 is the Bragg condition

of the scattering process, arising from momentum and energy conservation [12]. We observe
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from Eq.(9) that the atomic interaction term has a dynamical dispersive effect on the Bragg

resonance, proportional to the population difference W . In the linear regime, when a is

still small and W ≈ 1, the Bragg condition is ∆ = β, i.e. δ = ωr(2n + 1) + naU/h̄, where

naU = na4πh̄2as/m is the chemical potential and na = 2N/λΣ is the atomic density.

In the superradiant regime the field amplitude a can be adiabatically eliminated for times

much longer than κ−1. In fact, let introduce the slowly varying variable S̃(t) = S(t)eiα(t),

where α(t)∆t − β
∫ t
0 dt′W (t′), and let integrate Eq.(11):

a(t) = a(0)e−κt + gN
∫ t

0
dt′S̃(t − t′)e−iα(t−t′)−κt′ . (12)

If we assume that S̃ and W do not change appreciably in a time κ−1 during the superradiant

process, i.e. if τsr ≫ κ−1 where τsr is a characteristic time for superradiance, then in Eq.(12)

S̃(t − t′) ≈ S̃(t) and α(t − t′) ≈ α(t) − [∆ − βW (t)]t′. Performing the residual integration

in t′ and assuming t ≫ κ−1, we finally obtain:

a(t) ≈ gNS(t)

κ − i[∆ − βW (t)]
, (13)

so that the field a follows istantaneously the atomic evolution. Combining Eqs.(9), (10) and

(13) and defining I = |S|2, we obtain

İ = 2

{

GW

1 + [(∆ − βW )/κ]2
− γ

}

I (14)

Ẇ = − 4GI

1 + [(∆ − βW )/κ]2
(15)

where G = g2N/κ is the superradiant gain. Defining the characteristic time as τsr = 1/G,

it follows that the adiabatic approximation (13) is true for κ ≫ G, i.e. for κ ≫ g
√

N .

Furthermore, the two-level approximation is valid if G < ωr. ¿From Eqs.(14) and (15) it is

possible to derive the following analytical results:

• In the linear regime, for W ≈ 1, the threshold condition for superradiance is G >

γ{1 + [(∆ − β)/κ]2}, so that the only effect of the atomic interaction is a shift of the

resonance from ∆ = 0 to ∆ = β.

• Neglecting decoherence (γ = 0), Eqs. (14) and (15) admit the constant of motion

4I + W 2 = 1. Writing 2
√

I = sin φ and W = cos φ, we obtain an equation for the

Bloch angle φ:

φ̇ =
G sin φ

1 + (∆ − β cos φ)2 /κ2
. (16)
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Although Eqs.(16) can be solved exactly by quadrature, its solution can not be set

in an explicit form. Fig.1 shows |a|2/N , (a), and Pn = |cn|2 = (W + 1)/2, (b), as a

function of ωrt for different values of β, obtained solving numerically Eqs.(4) and (5)

for κ = 20ωr, g
√

N = 2ωr and ∆ = β. The results are in excellent agreement with

the numerical solution of the approximated Eq.(16), not reported in the figure. We

note that the effect of the atomic interaction is only a broadening of the superradiant

pulse, which still preserves the same area equal to π, transfering completely the atoms

from the initial momentum state n to the final momentum state n + 1.

• It is easy to calculate the exact analytical solution of Eqs. (14) and (15) when β = 0.

In fact, let introduce G′ = G/[1+(∆/κ)2] and the new variables x = (W−W0)/(1−W0)

and y = 2
√

I/(1 − W0), where W0 = γ/G′ < 1. ¿From Eqs. (14) and (15) it follows

that x2 + y2 = 1. Introducing again the Bloch angle φ defined such that x = cos φ and

y = sin φ, Eqs. (14) and (15) give the following equation for φ,

φ̇ = G′(1 − W0) sin φ, , (17)

whose solution yields x(t) = − tanh[G′(1 − W0)(t − tD)], where tD = − ln[|S(0)|/(1−
W0)]/G

′(1 − W0) is the delay time. Coming back to the original variables we finally

obtain:

I(t) =
(

1 − W0

2

)

sech2[G′(1 − W0)(t − tD)] (18)

W (t) = W0 − (1 − W0) tanh[G′(1 − W0)(t − tD)] (19)

We note that the asymptotic value of the population difference is 2W0 −1, so that the

fraction of atoms left in the initial state after the superradiant process is Pn = W0 =

γ/G′. Measuring experimentally G′ and Pn it is possible to evaluate the decoherence

rate γ [4].

IV. INHOMOGENEOUS CASE

Let now consider the case in which the condensate is described initially by a wavepacket

with a finite size σθ = 2kσz and pz = 0. We have solved Eqs.(1) and (2) for an initial

Gaussian wavepacket of width σθ = 25, κ = 10ωr, g
√

2N = ωr, ∆ = 0 and different values
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of β. The numerical integration of Eqs. (1) and (2) is based on a finite-difference predictor-

corrector scheme [13, 14]. Fig.2 shows the density distribution, ρ(θ, t) = |Ψ(θ, t)|2, for β = 0

at different times, whereas fig.3 shows the corresponding momentum distribution ρ(pz, t) =

|Ψ̃(pz, t)|2, where Ψ̃ is the Fourier transform of the wavefunction Ψ. We observe that the

superradiant process produces a condensate fraction moving with an average momentum

pz = 2h̄k and a smaller momentum spread (see fig.3). In the configuration space (see fig.2)

we clearly observe the interference fringes when the two fractions overlap, whereas for longer

times the recoiling atoms move away from the original condensate.

Fig.4 shows |a|2/N , (a), and Pn, (b), as a function of ωrt for different values of β, where Pn

is the population of the momentum state pz = n(2h̄k), calculated integrating the momentum

distribution over an interval centered around pz = n(2h̄k) and of length 2h̄k. This can

be done only if the momentum distribution remains narrower than the momentum level

separation, i.e. if σpz
≪ 2h̄k.

We observe that contrary to the homogeneous case, increasing β the superradiant pro-

cess becomes less efficient, decreasing the area of the superradiant pulse (see fig.4(a)) and

increasing the fraction of atoms left in the initial momentum state (see fig.4(b)). This effect

can be interpreted as due to a dephasing caused by a detuning from the resonance depend-

ing on the atomic density. Each atom evolves with a different detuning from the resonance,

resulting in a inhomogeneous broadening of the superradiant transition and a subsequent

decay of the coherence between the atoms. Similarly to the photon echo [11], it is expected

that this dephasing may be partially reversed applying a suitable Bragg pulse or area π, at

least for small values of β. For larger or negative values of β, it is expected that nonlinear

effects are more important, and this regime will be the object of a future detailed analysis.
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FIG. 1: Effects of the atomic interaction on the superradiant regime in the homogeneous case:

|a|2/N , (a), and population fraction Pn of the initial momentum state, (b), vs. ωrt, from the

numerical integration of Eqs.(4) and (5) with κ = 20ωr, g
√

N = 2ωr, ∆ = β and different values

of β.
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FIG. 2: Evolution of the density distribution ρ(θ, t) = |Ψ(θ, t)|2 vs. θ = 2kz at different times, from

the numerical integration of Eqs.(1) and (2) for an initial Gaussian wavepacket of width σθ = 25,

κ = 10ωr, g
√

2N = ωr, ∆ = 0, and β = 0.
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FIG. 3: Evolution of the momentum distribution ρ(pz, t) = |Ψ̃(pz, t)|2 vs. pz (in units of 2h̄k) at

different times and for the same case shown in fig.2.
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|a|2/N , (a), and population fraction Pn of the initial momentum state, (b), vs. ωrt, for the same

initial conditions and parameters of the case shown in fig.2 and different values of β.
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