6 research outputs found
Non-Invasive Mouse Models of Post-Traumatic Osteoarthritis
SummaryAnimal models of osteoarthritis (OA) are essential tools for investigating the development of the disease on a more rapid timeline than human OA. Mice are particularly useful due to the plethora of genetically modified or inbred mouse strains available. The majority of available mouse models of OA use a joint injury or other acute insult to initiate joint degeneration, representing post-traumatic osteoarthritis (PTOA). However, no consensus exists on which injury methods are most translatable to human OA. Currently, surgical injury methods are most commonly used for studies of OA in mice; however, these methods may have confounding effects due to the surgical/invasive injury procedure itself, rather than the targeted joint injury. Non-invasive injury methods avoid this complication by mechanically inducing a joint injury externally, without breaking the skin or disrupting the joint. In this regard, non-invasive injury models may be crucial for investigating early adaptive processes initiated at the time of injury, and may be more representative of human OA in which injury is induced mechanically. A small number of non-invasive mouse models of PTOA have been described within the last few years, including intra-articular fracture of tibial subchondral bone, cyclic tibial compression loading of articular cartilage, and anterior cruciate ligament (ACL) rupture via tibial compression overload. This review describes the methods used to induce joint injury in each of these non-invasive models, and presents the findings of studies utilizing these models. Altogether, these non-invasive mouse models represent a unique and important spectrum of animal models for studying different aspects of PTOA
Why mechanobiology? A survey article
The central paradigm of skeletal mechanobiology is that mechanical forces modulate morphological and structural fitness of the skeletal tissues-bone, cartilage, ligament and tendon. Traditionally, skeletal biomechanics has focussed on how these tissues perform the structural and locomotory functions of the vertebrate skeleton. In mechanobiology the central question is how these same load-bearing tissues are produced, maintained and adapted by cells as an active response to biophysical stimuli in their environment. The idea that 'form follows function' is not new, but we now believe that the scientific community has the knowledge and tools to prove, understand and use functional adaptation to benefit medicine and human health. In this Survey Article the philosophy and progress of skeletal mechanobiology are discussed. The revival of this science, with roots dating back to the 19th Century, is now driven by new developments in cellular, molecular and computational technologies. These developments are still in an early stage of application, but if modern mechanobiology fulfills the promises of its ambitions, the results will bring great benefits to tissue engineering and to the treatment and prevention of skeletal conditions such as congenital deformities, osteoporosis, osteoarthritis and bone fractures
Atypical Subtrochanteric and Diaphyseal Femoral Fractures: Second Report of a Task Force of the American Society for Bone and Mineral Research
Bisphosphonates (BPs) and denosumab reduce the risk of spine and nonspine fractures. Atypical femur fractures (AFFs) located in the subtrochanteric region and diaphysis of the femur have been reported in patients taking BPs and in patients on denosumab, but they also occur in patients with no exposure to these drugs. In this report, we review studies on the epidemiology, pathogenesis, and medical management of AFFs, published since 2010. This newer evidence suggests that AFFs are stress or insufficiency fractures. The original case definition was revised to highlight radiographic features that distinguish AFFs from ordinary osteoporotic femoral diaphyseal fractures and to provide guidance on the importance of their transverse orientation. The requirement that fractures be noncomminuted was relaxed to include minimal comminution. The periosteal stress reaction at the fracture site was changed from a minor to a major feature. The association with specific diseases and drug exposures was removed from the minor features, because it was considered that these associations should be sought rather than be included in the case definition. Studies with radiographic review consistently report significant associations between AFFs and BP use, although the strength of associations and magnitude of effect vary. Although the relative risk of patients with AFFs taking BPs is high, the absolute risk of AFFs in patients on BPs is low, ranging from 3.2 to 50 cases per 100,000 person-years. However, long-term use may be associated with higher risk (approximate to 100 per 100,000 person-years). BPs localize in areas that are developing stress fractures; suppression of targeted intracortical remodeling at the site of an AFF could impair the processes by which stress fractures normally heal. When BPs are stopped, risk of an AFF may decline. Lower limb geometry and Asian ethnicity may contribute to the risk of AFFs. There is inconsistent evidence that teriparatide may advance healing of AFFs. (c) 2014 American Society for Bone and Mineral Research