459 research outputs found

    Constraining a hybrid volatility basis-set model for aging of wood-burning emissions using smog chamber experiments : A box-model study based on the VBS scheme of the CAMx model (v5.40)

    Get PDF
    In this study, novel wood combustion aging experiments performed at different temperatures (263 and 288 K) in a ∼ 7 m³ smog chamber were modelled using a hybrid volatility basis set (VBS) box model, representing the emission partitioning and their oxidation against OH. We combine aerosol–chemistry box-model simulations with unprecedented measurements of non-traditional volatile organic compounds (NTVOCs) from a high-resolution proton transfer reaction mass spectrometer (PTR-MS) and with organic aerosol measurements from an aerosol mass spectrometer (AMS). Due to this, we are able to observationally constrain the amounts of different NTVOC aerosol precursors (in the model) relative to low volatility and semi-volatile primary organic material (OMsv_{sv}), which is partitioned based on current published volatility distribution data. By comparing the NTVOC ∕ OMsv_{sv} ratios at different temperatures, we determine the enthalpies of vaporization of primary biomass-burning organic aerosols. Further, the developed model allows for evaluating the evolution of oxidation products of the semi-volatile and volatile precursors with aging. More than 30 000 box-model simulations were performed to retrieve the combination of parameters that best fit the observed organic aerosol mass and O : C ratios. The parameters investigated include the NTVOC reaction rates and yields as well as enthalpies of vaporization and the O : C of secondary organic aerosol surrogates. Our results suggest an average ratio of NTVOCs to the sum of non-volatile and semi-volatile organic compounds of ∼ 4.75. The mass yields of these compounds determined for a wide range of atmospherically relevant temperatures and organic aerosol (OA) concentrations were predicted to vary between 8 and 30 % after 5 h of continuous aging. Based on the reaction scheme used, reaction rates of the NTVOC mixture range from 3.0 × 10−11^{-11} to 4. 0 × 10−11^{-11} cm³ molec−1^{-1} s−1^{-1}. The average enthalpy of vaporization of secondary organic aerosol (SOA) surrogates was determined to be between 55 000 and 35 000 J mol−1^{-1}, which implies a yield increase of 0.03-0.06 % K−1^{-1} with decreasing temperature. The improved VBS scheme is suitable for implementation into chemical transport models to predict the burden and oxidation state of primary and secondary biomass-burning aerosols

    Modelo de Aprendizado Incremental Baseado em Uma Rede Neural com Arquitetura Adaptativa

    Get PDF
    Este trabalho apresenta uma abordagem baseada em Redes Neurais Artificiais para problemas de classificação multi-rotulada. Em particular, foi empregada uma versão modificada da Rede Neural Probabilística para tratar de tais problemas. Em experimentos realizados em várias bases de dados conhecidas na literatura, a Rede Neural Probabilística proposta apresentou um desempenho comparável, e algumas vezes até superior, a outros algoritmos especializados neste tipo de problema. Como o foco principal deste trabalho foi o estudo de estratégias para classificação automática de texto de atividades econômicas, foram realizados também experimentos utilizando uma base de dados de atividades econômicas. No entanto, diferente das bases de dados utilizadas anteriormente, esta base de dados apresenta um número extenso de categorias e poucas amostras de treino por categoria, o que aumenta o grau de dificuldade deste problema. Nos experimentos realizados foram utilizados a Rede Neural Probabilística proposta, o classificador k-Vizinhos mais Próximos Multi-rotulado, e um Algoritmo Genético para otimização dos parâmetros dos mesmos. Nas métricas utilizadas para avaliação de desempenho, a Rede Neural Probabilística mostrou resultados superiores e comparáveis aos resultados obtidos pelo k-Vizinhos mais Próximos Multi-rotulado, mostrando que a abordagem utilizada neste trabalho é promissora

    Rede Neural Probabilística para a Classificação de Atividades Econômicas

    Get PDF
    Este trabalho apresenta uma abordagem baseada em Redes Neurais Artificiais para problemas de classificação multi-rotulada. Em particular, foi empregada uma versão modificada da Rede Neural Probabilística para tratar de tais problemas. Em experimentos realizados em várias bases de dados conhecidas na literatura, a Rede Neural Probabilística proposta apresentou um desempenho comparável, e algumas vezes até superior, a outros algoritmos especializados neste tipo de problema. Como o foco principal deste trabalho foi o estudo de estratégias para classificação automática de texto de atividades econômicas, foram realizados também experimentos utilizando uma base de dados de atividades econômicas. No entanto, diferente das bases de dados utilizadas anteriormente, esta base de dados apresenta um número extenso de categorias e poucas amostras de treino por categoria, o que aumenta o grau de dificuldade deste problema. Nos experimentos realizados foram utilizados a Rede Neural Probabilística proposta, o classificador k-Vizinhos mais Próximos Multi-rotulado, e um Algoritmo Genético para otimização dos parâmetros dos mesmos. Nas métricas utilizadas para avaliação de desempenho, a Rede Neural Probabilística mostrou resultados superiores e comparáveis aos resultados obtidos pelo k-Vizinhos mais Próximos Multi-rotulado, mostrando que a abordagem utilizada neste trabalho é promissora

    Modelling winter organic aerosol at the European scale with CAMx : evaluation and source apportionment with a VBS parameterization based on novel wood burning smog chamber experiments

    Get PDF
    We evaluated a modified VBS (volatility basis set) scheme to treat biomass-burning-like organic aerosol (BBOA) implemented in CAMx (Comprehensive Air Quality Model with extensions). The updated scheme was parameterized with novel wood combustion smog chamber experiments using a hybrid VBS framework which accounts for a mixture of wood burning organic aerosol precursors and their further functionalization and fragmentation in the atmosphere. The new scheme was evaluated for one of the winter EMEP intensive campaigns (February March 2009) against aerosol mass spectrometer (AMS) measurements performed at 11 sites in Europe. We found a considerable improvement for the modelled organic aerosol (OA) mass compared to our previous model application with the mean fractional bias (MFB) reduced from 61 to 29 %. We performed model-based source apportionment studies and compared results against positive matrix factorization (PMF) analysis performed on OA AMS data. Both model and observations suggest that OA was mainly of secondary origin at almost all sites. Modelled secondary organic aerosol (SOA) contributions to total OA varied from 32 to 88 % (with an average contribution of 62 %) and absolute concentrations were generally under-predicted. Modelled primary hydrocarbon-like organic aerosol (HOA) and primary biomass-burning-like aerosol (BBPOA) fractions contributed to a lesser extent (HOA from 3 to 30 %, and BBPOA from 1 to 39 %) with average contributions of 13 and 25 %, respectively. Modelled BBPOA fractions were found to represent 12 to 64 % of the total residential-heating-related OA, with increasing contributions at stations located in the northern part of the domain. Source apportionment studies were performed to assess the contribution of residential and non-residential combustion precursors to the total SOA. Non-residential combustion and road transportation sector contributed about 30-40 % to SOA formation (with increasing contributions at urban and near industrialized sites), whereas residential combustion (mainly related to wood burning) contributed to a larger extent, around 60-70 %. Contributions to OA from residential combustion precursors in different volatility ranges were also assessed: our results indicate that residential combustion gas-phase precursors in the semivolatile range (SVOC) contributed from 6 to 30 %, with higher contributions predicted at stations located in the southern part of the domain On the other hand, the oxidation products of higher-volatility precursors (the sum of intermediate-volatility compounds (IVOCs) and volatile organic compounds (VOCs)) contribute from 15 to 38 % with no specific gradient among the stations. Although the new parameterization leads to a better agreement between model results and observations, it still under predicts the SOA fraction, suggesting that uncertainties in the new scheme and other sources and/or formation mechanisms remain to be elucidated. Moreover, a more detailed characterization of the semivolatile components of the emissions is needed.Peer reviewe

    Changes in ozone and PM2.5 in Europe during the period of 1990-2030 : Role of reductions in land and ship emissions

    Get PDF
    Air pollution is among the top threats to human health and ecosystems despite the substantial decrease in anthropogenic emissions. Meanwhile, the role of ship emissions on air quality is becoming increasingly important with the growing maritime transport and less strict regulations. In this study, we modeled the air quality in Europe between 1990 and 2030 with ten-year intervals, using the regional air quality model CAMx version 6.50, to investigate the changes in the past (1990-2010) as well as the effects of different land and ship emission scenarios in the future (2020,2030). The modeled mean ozone levels decreased slightly during the first decade but then started increasing again especially in polluted areas. Results from the future scenarios suggest that by 2030 the peak ozone would decrease, leading to a decrease in the days exceeding the maximum daily 8-h average ozone (MDA8) limit values (60 ppb) by 51% in southern Europe relative to 1990. The model results show a decrease of 56% (6.3 mu g m(-3)) in PM2.5 concentrations from 1990 to 2030 under current legislation, mostly due to a large drop in sulfate (representing up to 44% of the total PM2.5 decrease during 1990-2000) while nitrate concentrations were predicted to go down with an increasing rate (10% of total PM2.5 decrease during 1990-2000 while 36% during 2020-2030). The ship emissions if reduced according to the maximum technically feasible reduction (MTFR) scenario were predicted to contribute up to 19% of the decrease in the PM2.5 concentrations over land between 2010 and 2030. Ship emission reductions according to the MTFR scenario would lead to a decrease in the days with MDA8 exceeding EU limits by 24-28% (10-14 days) around the coastal regions. The results obtained in our study show the increasing importance of ship emission reductions, after a relatively large decrease in land emissions was achieved in Europe. (c) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Role of ammonia in European air quality with changing land and ship emissions between 1990 and 2030

    Get PDF
    The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future. Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors – nitrogen oxides (NOx) and sulfur dioxide (SO2) – since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990–2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 – assuming the current legislation (CLE) scenario – are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.The focus of this modeling study is on the role of ammonia in European air quality in the past as well as in the future Ammonia emissions have not decreased as much as the other secondary inorganic aerosol (SIA) precursors - nitrogen oxides (NOx) and sulfur dioxide (SO2) - since the 1990s and are still posing problems for air quality and the environment. In this study, air quality simulations were performed with a regional chemical transport model at decadal intervals between 1990 and 2030 to understand the changes in the chemical species associated with SIA under varying land and ship emissions. We analyzed the changes in air concentrations of ammonia, nitric acid, ammonium, particulate nitrate and sulfate as well as changes in the dry and wet deposition of ammonia and ammonium. The results show that the approximately 40 % decrease in SIA concentrations between 1990 and 2010 was mainly due to reductions in NOx and SO2 emissions. The ammonia concentrations on the other hand decreased only near the high-emission areas such as the Netherlands and northern Italy by about 30 %, while there was a slight increase in other parts of Europe. Larger changes in concentrations occurred mostly during the first period (1990-2000). The model results indicate a transition period after 2000 for the composition of secondary inorganic aerosols due to a larger decrease in sulfate concentrations than nitrate. Changes between 2010 and 2030 - assuming the current legislation (CLE) scenario - are predicted to be smaller than those achieved earlier for all species analyzed in this study. The scenario simulations suggest that if ship emissions will be regulated more strictly in the future, SIA formation will decrease especially around the Benelux area, North Sea, Baltic Sea, English Channel and the Mediterranean region, leaving more ammonia in the gas phase, which would lead to an increase in dry deposition. In the north of the domain, the decrease in SIA would be mainly due to reduced formation of particulate nitrate, while the change around the Mediterranean would be caused mainly by decreased sulfate aerosol concentrations. One should also keep in mind that potentially higher temperatures in the future might increase the evaporation of ammonium nitrate to form its gaseous components NH3 and HNO3. Sensitivity tests with reduced NOx and NH3 emissions indicate a shift in the sensitivity of aerosol formation from NH3 towards NOx emissions between 1990 and 2030 in most of Europe except the eastern part of the model domain.Peer reviewe
    • …
    corecore