956 research outputs found
On the Renormalization of a Bosonized Version of the Chiral Fermion-Meson Model at Finite Temperature
Feynman's functional formulation of statistical mechanics is used to study
the renormalizability of the well known Linear Chiral Sigma Model in the
presence of fermionic fields at finite temperature in an alternative way. It is
shown that the renormalization conditions coincide with those of the zero
temperature model.Comment: 12 pages, no figures, LaTex, reference [17] is updated, to appear in
Phys. Lett.
A nonlocal, covariant generalisation of the NJL model
We solve a nonlocal generalisation of the NJL model in the Hartree
approximation. This model has a separable interaction, as suggested by
instanton models of the QCD vacuum. The choice of form factor in this
interaction is motivated by the confining nature of the vacuum. A conserved
axial current is constructed in the chiral limit of the model and the pion
properties are shown to satisfy the Gell-Mann--Oakes--Renner relation. For
reasonable values of the parameters the model exhibits quark confinement.Comment: 13 pages (RevTeX), MC/TH 94/1
Supersymmetric Leptogenesis
We study leptogenesis in the supersymmetric standard model plus the seesaw.
We identify important qualitative differences that characterize supersymmetric
leptogenesis with respect to the non-supersymmetric case. The lepton number
asymmetries in fermions and scalars do not equilibrate, and are related via a
non-vanishing gaugino chemical potential. Due to the presence of new anomalous
symmetries, electroweak sphalerons couple to winos and higgsinos, and QCD
sphalerons couple to gluinos, thus modifying the corresponding chemical
equilibrium conditions. A new constraint on particles chemical potentials
corresponding to an exactly conserved -charge, that also involves the number
density asymmetry of the heavy sneutrinos, appears. These new ingredients
determine the matrices that mix up the density asymmetries of the
lepton flavours and of the heavy sneutrinos. We explain why in all temperature
ranges the particle thermodynamic system is characterized by the same number of
independent quantities. Numerical differences with respect to usual treatment
remain at the level.Comment: 30 pages, 2 figures. Typos corrected, one reference added. Version
published in JCA
Leptogenesis without violation of B-L
We study the possibility of generating the observed baryon asymmetry via
leptogenesis in the decay of heavy Standard Model singlet fermions which carry
lepton number, in a framework without Majorana masses above the electroweak
scale. Such scenario does not contain any source of total lepton number
violation besides the Standard Model sphalerons, and the baryon asymmetry is
generated by the interplay of lepton flavour effects and the sphaleron
decoupling in the decay epoch.Comment: V2 (published version): 21 pages, 4 figures. Some explanations have
been adde
Atmospheric Neutrino Oscillations and New Physics
We study the robustness of the determination of the neutrino masses and
mixing from the analysis of atmospheric and K2K data under the presence of
different forms of phenomenologically allowed new physics in the nu_mu--nu_tau
sector. We focus on vector and tensor-like new physics interactions which allow
us to treat, in a model independent way, effects due to the violation of the
equivalence principle, violations of the Lorentz invariance both CPT conserving
and CPT violating, non-universal couplings to a torsion field and non-standard
neutrino interactions with matter. We perform a global analysis of the full
atmospheric data from SKI together with long baseline K2K data in the presence
of nu_mu -> nu_tau transitions driven by neutrino masses and mixing together
with sub-dominant effects due to these forms of new physics. We show that
within the present degree of experimental precision, the extracted values of
masses and mixing are robust under those effects and we derive the upper bounds
on the possible strength of these new interactions in the nu_mu--nu_tau sector.Comment: 22 pages, LaTeX file using RevTEX4, 5 figures and 4 tables include
Models of Neutrino Masses: Anarchy versus Hierarchy
We present a quantitative study of the ability of models with different
levels of hierarchy to reproduce the solar neutrino solutions, in particular
the LA solution. As a flexible testing ground we consider models based on
SU(5)xU(1)_F. In this context, we have made statistical simulations of models
with different patterns from anarchy to various types of hierachy: normal
hierarchical models with and without automatic suppression of the 23
(sub)determinant and inverse hierarchy models. We find that, not only for the
LOW or VO solutions, but even in the LA case, the hierarchical models have a
significantly better success rate than those based on anarchy. The normal
hierachy and the inverse hierarchy models have comparable performances in
models with see-saw dominance, while the inverse hierarchy models are
particularly good in the no see-saw versions. As a possible distinction between
these categories of models, the inverse hierarchy models favour a maximal solar
mixing angle and their rate of success drops dramatically as the mixing angle
decreases, while normal hierarchy models are far more stable in this respect.Comment: v1: 28 pages, 12 figures; v2: 34 pages, 14 figures, updated previous
analysis with the inclusion of recent SNO result
Long-term trends in tropical cyclone tracks around Korea and Japan in late summer and early fall
This study investigates long-term trends in tropical cyclones (TCs) over the extratropical western North Pacific (WNP) over a period of 35 years (1982-2016). The area analyzed extended across 30-45 degrees N and 120-150 degrees E, including the regions of Korea and Japan that were seriously affected by TCs. The northward migration of TCs over the WNP to the mid-latitudes showed a sharp increase in early fall. In addition, the duration of TCs over the WNP that migrated northwards showed an increase, specifically in early to mid-September. Therefore, more recently, TC tracks have been observed to significantly extend into the mid-latitudes. The recent northward extension of TC tracks over the WNP in early fall was observed to be associated with changes in environmental conditions that were favorable for TC activities, including an increase in sea surface temperature (SST), decrease in vertical wind shear, expansion of subtropical highs, strong easterly steering winds, and an increase in relative vorticity. In contrast, northward migrations of TCs to Korea and Japan showed a decline in late August, because of the presence of unfavorable environmental conditions for TC activities. These changes in environmental conditions, such as SST and vertical wind shear, can be partially associated with the Pacific decadal oscillation
Improved tensor-product expansions for the two-particle density matrix
We present a new density-matrix functional within the recently introduced
framework for tensor-product expansions of the two-particle density matrix. It
performs well both for the homogeneous electron gas as well as atoms. For the
homogeneous electron gas, it performs significantly better than all previous
density-matrix functionals, becoming very accurate for high densities and
outperforming Hartree-Fock at metallic valence electron densities. For isolated
atoms and ions, it is on a par with previous density-matrix functionals and
generalized gradient approximations to density-functional theory. We also
present analytic results for the correlation energy in the low density limit of
the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure
Renormalization Group Evolution of Dirac Neutrino Masses
There are good reasons why neutrinos could be Majorana particles, but there
exist also a number of very good reasons why neutrinos could have Dirac masses.
The latter option deserves more attention and we derive therefore analytic
expressions describing the renormalization group evolution of mixing angles and
of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings
are in this case enhanced compared to the quark mixings because the hierarchy
of neutrino masses is milder and because the mixing angles are larger. The
renormalization group effects are compared to the precision of current and
future neutrino experiments. We find that, in the MSSM framework, radiative
corrections of the mixing angles are for large \tan\beta comparable to the
precision of future experiments.Comment: 19 pages, 5 figures; error in eq. 8 corrected, references adde
Neutrino Oscillations v.s. Leptogenesis in SO(10) Models
We study the link between neutrino oscillations and leptogenesis in the
minimal framework assuming an SO(10) see-saw mechanism with 3 families. Dirac
neutrino masses being fixed, the solar and atmospheric data then generically
induce a large mass-hierarchy and a small mixing between the lightest
right-handed neutrinos, which fails to produce sufficient lepton asymmetry by 5
orders of magnitudes at least. This failure can be attenuated for a very
specific value of the mixing sin^2(2\theta_{e3})=0.1, which interestingly lies
at the boundary of the CHOOZ exclusion region, but will be accessible to future
long baseline experiments.Comment: 23 pages, 8 eps figures, JHEP3 format; more accurate effect of
dilution reduces previous results, inclusion of all phases, added reference
- …