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CH-1211 Genève 23, Switzerland

E-mail: guido.altarelli@cern.ch

Ferruccio Feruglio

Dipartimento di Fisica ‘G. Galilei’, Università di Padova and INFN, Sezione di Padova
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Abstract: We present a quantitative study of the ability of models with different levels

of hierarchy to reproduce the solar neutrino solutions, in particular the LA solution. As

a flexible testing ground we consider models based on SU(5) × U(1)F. In this context, we

have made statistical simulations of models with different patterns from anarchy to various

types of hierachy: normal hierarchical models with and without automatic suppression of

the 23 (sub)determinant and inverse hierarchy models. We find that, not only for the LOW

or VO solutions, but even in the LA case, the hierarchical models have a significantly better

success rate than those based on anarchy. The normal hierachy and the inverse hierarchy

models have comparable performances in models with see-saw dominance, while the inverse

hierarchy models are particularly good in the no see-saw versions. As a possible distinction

between these categories of models, the inverse hierarchy models favour a maximal solar

mixing angle and their rate of success drops dramatically as the mixing angle decreases,

while normal hierarchy models are far more stable in this respect.
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1. Introduction

At present there are many possible models of ν masses and mixing [1]. This variety is

mostly due to the considerable experimental ambiguities that remain. In particular different

solutions for solar neutrino oscillations are still possible. Although the Large Angle (LA)

solution emerges as the most likely from present data, the other solutions LOW and Vacuum

Oscillations (VO) are still not excluded (the small angle solution is very disfavoured by

now and we will disregard it in most of the following discussion). Indeed no solution is

actually leading to an imposingly good fit and, for example, the discrimination between

LA and LOW is only based on a few hints which are far from compelling [2]. Hopefully

in a few months, when the first results from the KamLAND experiment [3] will be known,

one will have decisive evidence on this matter. Here we tentatively disregard the possibility

of a third neutrino oscillation frequency as indicated by the LSND experiment [4] but not

confirmed by KARMEN [5] and to be finally checked by the MiniBOONE experiment [6]

now about to start.

For model building there is an important quantitative difference between the LA so-

lution on the one side and the LOW or VO solutions on the other side. While for all these

solutions the relevant mixing angle θ12 is large, the value of the squared mass difference

∆m2
12 = m2

2 − m2
1 (with, by definition, m2

2 ≥ m2
1) is very different for LA, LOW and

VO: ∼ 10−4 eV2, ∼ 10−7 eV2 and ∼ 10−10 eV2, respectively. Thus the gap with respect

to the atmospheric neutrino oscillation frequency ∆m2
23 = m2

3 − m2
2, which is given by

|∆m2
23| ∼ 3 ·10−3 eV2, is moderate for LA and very pronounced for the other two solutions.

For the LOW and VO solutions the large frequency difference with respect to that of

atmospheric neutrinos points to a hierarchical spectrum for the three light neutrinos. Pos-

sible hierarchical patterns are the normal hierarchy case m3 À m2 & m1 or the inverted
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hierarchy alternative m2 & m1 À m3 (in this case ∆m2
23 is negative in our definition).

Then a main problem is to explain the presence of large mixing angles between largely

splitted mass states (in particular the atmospheric neutrino oscillation mixing angle θ23 is

experimentally close to maximal). In hierarchical models the consistency of these usually

opposed constraints is obtained by mechanisms that guarantee a vanishing or a strongly

suppressed 23 sub-determinant. In the see-saw mechanism for neutrino masses this sup-

pression can be naturally obtained, for example, in the so-called lopsided models [7] and/or

by the dominance [8] of one eigenvalue in M−1, M being the right-handed (RH) Majorana

matrix. Models of this type have been studied and provide, as also quantitatively con-

firmed by our present analysis, an essentially unique framework for a successful description

of both atmospheric and solar neutrino oscillations when the LOW or the VO solutions are

adopted.

In the case of the LA solution the ratio of the solar and atmospheric ∆m2 ranges is

typically given by

r =
∆m2

12

|∆m2
23|
∼ 1

20
− 1

100
. (1.1)

For LA one can reproduce the data either in a nearly degenerate or in a hierarchical

model. In a degenerate model, due to laboratory and cosmological bounds, the common

value of m2
i ∼ m2 cannot exceed a few eV2. But the actual value is probably well below

this level because of the constraint imposed by neutrinoless double beta decay (0νββ) [9]

that would otherwise require a strong cancellation, only possible for nearly maximal solar

oscillation mixing [10]. This fact, together with the general difficulty, in the absence of a

specific mechanism, of obtaining too small values of ∆m2
12/m

2, suggests that a moderate

degeneracy is more likely. Typically we could have all m2
i ∼ (few 10−3 − 10−2) eV2 with

one comparatively not-so-small splitting ∆m2
12 ∼ 10−4 eV2. Or, as a different example,

we can have a (normal) hierarchical model with m2
3 ∼ 3 · 10−3 eV2, m2

2 . 10−4 eV2 and

m2
1 ∼ 0 or an (inverse) hierarchical model with m2

1,2 ∼ 3 ·10−3 eV2, and m2
3 ∼ 0. Actually a

sufficient hierarchy (a factor of 5 in mass) can arise from no significant underlying structure

at all. In particular, the see-saw mechanism, being quadratic in the Dirac neutrino masses,

tends to enhance small fluctuations in the Dirac eigenvalue ratios. This is the point of

view of anarchical models [11], where no structure is assumed to exist in the neutrino

mass matrix and the smallness of r is interpreted as a fluctuation. But one additional

feature of the data plays an important role in this context and presents a clear difficulty

for anarchical models. This is the experimental result that the third mixing angle θ13 is

small, |Ue3| = | sin θ13| . 0.2 [12]. So, for neutrinos two mixing angles are large and one

is small. Instead in anarchical models all angles should apriori be comparable and not

particularly small. Therefore this is a difficulty for anarchy and, for the survival of these

models, it is necessary that θ13 is found very close to the present upper bound. Instead in

hierarchical models the smallness of θ13 can be obtained as a reflection of the underlying

structure in that some small parameter is present from the beginning in these models.

In this note we make a quantitative study of the ability of different models to reproduce

the solar neutrino solutions. As a flexible testing ground we consider models based on

SU(5) × U(1)F. The SU(5) generators act “vertically” inside one generation, while the

– 2 –



J
H
E
P
0
1
(
2
0
0
3
)
0
3
5

U(1)F charges are different “horizontally” from one generation to the other. If, for a given

interaction vertex, the U(1)F charges do not add to zero, the vertex is forbidden in the

symmetric limit. But the symmetry is spontaneously broken by the VEV vf of a number

of “flavon” fields with non vanishing charge. Then a forbidden coupling is rescued but is

suppressed by powers of the small parameters λf = vf/Λ with the exponent larger for larger

charge mismatch [13]. We expect vf & MGUT and, for the cut-off Λ of the theory, Λ . MP l.

In these models [14, 15] the known generations of quarks and leptons are contained in

triplets Ψ10
i and Ψ5̄

i , (i = 1, 2, 3) corresponding to the 3 generations, transforming as 10

and 5̄ of SU(5), respectively. Three more SU(5) singlets Ψ1
i describe the RH neutrinos. In

SUSY models we have two Higgs multiplets, which transform as 5 and 5̄ in the minimal

model. All mass matrix elements are of the form of a power of a suppression factor times

a number of order unity, so that only their order of suppression is defined. We restrict

for simplicity to integral charges: this is practically a forced choice for the LA case where

the hierarchy parameter must be relatively large (so that
√
λ ∼ 0(1)), while for the LOW

and VO cases, where the hierarchy parameter is small, it is only motivated by the fact

that enough flexibility is obtained for the present indicative purposes. There are many

variants of these models [1]: fermion charges can all be non negative with only negatively

charged flavons, or there can be fermion charges of different signs with either flavons of

both charges or only flavons of one charge. The Higgs charges can be equal, in particular

both vanishing or can be different. We will make use of this flexibility in order to study

the relative merits of anarchy versus various degrees and different patterns of hierarchy.

In this context we have studied in detail different classes of models: normal hierar-

chical models with and without automatic suppression of the 23 (sub)determinant, inverse

hierarchy models and anarchical models. The normal hierarchical models without auto-

matic suppression of the 23 determinant are clearly intermediate: in a sense in those cases

anarchy is limited to the 23 sector. We denote them as partially hierarchical or semi-

anarchical in the following. We also compare, when applicable, models with light neutrino

masses dominated by the see-saw mechanism or by non renormalizable dim-5 operators.

We construct our models by assigning suitable sets of charges for Ψ10
i , Ψ5̄

i and Ψ1
i . In all

input mass matrices the coefficients multiplying the power of the hierarchy parameter are

generated at random as real and complex numbers in a given range of values [11, 16]. We

compare the case of real or complex parameters and we also discuss the delicate questions

of the probability distribution for the coefficients and the stability of the results. We as-

sign a merit factor to each model given by the percentage of success over a large sample of

trials. For each model the value of the hierarchy parameter is adjusted by a coarse fitting

procedure to get the best rate of success.

Our results can be summarized as follows. As expected, for the LOW and VO cases

only hierarchical model provide a viable approach: in comparison the rate of success of

anarchical and seminarchical models is negligible. But also for the LA solution we still

find that hierarchical models are sizeably better in general. The most efficient ones are

inverse hierarchy models with no see-saw dominance, which are more than 10 times better

with respect to anarchy with see-saw (anarchy prefers the see-saw case by about a factor

of 2). Among the see-saw dominance versions the most performant models remain the
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hierarchical ones (by a factor of about 4 with respect to anarchy with see-saw) with not

much difference between inverse or normal hierarchy. Semi-Anarchical models are down by

a factor of about 2 with respect to hierarchical models among the see-saw versions (but this

value is less stable with respect to changes of the extraction procedure and, for example, it

tends to be washed out going from complex to real coefficients). In all models the tan2 θ23
distribution is in agreement with large mixing but it is not sharply peaked around 1 as

for maximal mixing. Near maximal mixing is instead a prediction for solar neutrinos in

inverse hierarchical models, so that their advantage with respect to other models would be

rapidly destroyed if the data will eventually move in the direction away from maximality.

2. Framework

We consider a class of models with an abelian flavour symmetry compatible with SU(5)

grand unification. Here we will not address the well-known problems of grand unified

theories, such as the doublet-triplet splitting, the proton lifetime, the gauge coupling unifi-

cation beyond leading order and the wrong mass relations for charged fermions of the first

two generations. We adopt the SU(5) × U(1)F framework simply as a convenient testing

ground for different neutrino mass scenarios. In all the models that we study the large

atmospheric mixing angle is described by assigning equal flavour charge to muon and tau

neutrinos and their weak SU(2) partners (all belonging to the 5̄ ≡ (l, dc) representation of

SU(5)). Instead, the solar neutrino oscillations can be obtained with different, inequivalent

charge assignments and both the LOW1 and the LA solution can be reproduced.

A first class of models is characterized by all matter fields having flavour charges of

one sign, for example all non negative. An important property of models in this class is

that the light neutrino mass matrix LTmνL is independent from the charges of both the 10

≡ (q, uc, ec) and 1 ≡ νc representations , even in the see-saw case when mν = mT
DM

−1
R mD.

For mν entries the powers of the symmetry breaking parameter λ are dictated by the

charges F of the 5̄. Since in this case what really matters are charge differences, rather

than absolute values, the equal charges for the second and third generations can be put to

zero, without loosing generality:

F(5̄) = (b, 0, 0) b ≥ 0 . (2.1)

If b also vanishes, then the light neutrino mass matrix will be structure-less and we will call

anarchical (A) this sub-class of models. In a large sample of anarchical models, generated

with random coefficients, the resulting neutrino mass spectrum can exhibit either normal

or inverse hierarchy. Anarchical models clearly prefer the LA solution with a moderate

separation between atmospheric and solar frequencies. They tend to favour large, not

necessarily maximal, mixing angles, including Ue3, which represents a problem. Therefore,

in anarchical models, Ue3 is expected to be close to the present experimental bound.

If b is positive, then the light neutrino mass matrix will be structure-less only in the

(2,3) sub-sector and we will call semi-anarchical (SA) the corresponding models. In this

1The LOW and VO solutions can be fitted almost equally well by suitable models. Thus here we will

focus mainly on the LOW case.
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Model Ψ10 Ψ5̄ Ψ1 (Hu,Hd)

Anarchical (A) (3,2,0) (0,0,0) (0,0,0) (0,0)

Semi-Anarchical (SA) (2,1,0) (1,0,0) (2,1,0) (0,0)

Hierarchical (H) (3,2,0) (2,0,0) (1,−1,0) (0,0)

Inversely Hierarchical (LA) (3,2,0) (1,−1,−1) (−1,+1,0) (0,+1)

Inversely Hierarchical (LOW) (2,1,0) (2,−2,−2) (−2,+2,0) (0,+2)

Table 1: Models and their flavour charges.

case, the neutrino mass spectrum has normal hierarchy. However, unless the (2,3) sub-

determinant is accidentally suppressed, atmospheric and solar oscillation frequencies are

expected to be of the same order and, in addition, the preferred solar mixing angle is

small. Nevertheless, such a suppression can occur in a fraction of semi-anarchical models

generated with random, order one coefficients. The real advantage over the fully anarchical

scheme is represented by the suppression in Ue3.

In a second class of models matter fields have both positive and negative flavour

charges. In these models, the light neutrino mass matrix will in general depend also on the

charges of 10 and 1. A first sub-case arises when only the RH neutrino fields have charges

of both signs. It has been shown that it is possible to exploit this feature to reproduce

a neutrino mass spectrum with normal hierarchy and a natural gap between atmospheric

and solar frequencies. Via the see-saw mechanism the (2,3) sub-determinant vanishes in

the flavour symmetric limit. At the same time a large solar mixing angle can be obtained.

Clearly this is particularly relevant for the LOW (or VO) solution. It is less clear to which

extent the condition of vanishing determinant is needed for the LA solution and one of

the purposes of the present paper is precisely to compare these models, which we will call

hierarchical (H) with the anarchical and semi-anarchical models, that do not reproduce

such a condition.

Finally, we can have fields with charges of both signs in both the 1 and the 5̄. In

this context it is possible to reproduce an inverse hierarchical spectrum, with a large

(actually, almost maximal) solar mixing angle and a large gap between atmospheric and

solar frequencies [17]. Also this sub-class of models, which we call inversely hierarchical

(IH), are appropriate to describe both LOW and LA solutions.

The hierarchical and the inversely hierarchical models may come into several varieties

depending on the number and the charge of the flavour symmetry breaking (FSB) param-

eters. Here we will consider both the case (I) of a single, negatively charged flavon, with

symmetry breaking parameter λ or that of two (II) oppositely charged flavons with sym-

metry breaking parameters λ and λ′. In case I, it is impossible to compensate negative F

charges in the Yukawa couplings and the corresponding entries in the neutrino mass matri-

ces vanish. Eventually these zeroes are filled by small contributions, arising, for instance,

from the diagonalization of the charged lepton sector or from the transformations needed

to make the kinetic terms canonical. In our analysis we will always include effects coming

from the charged lepton sector, whereas we will neglect those coming from non-canonical

kinetic terms.
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Model parameters d23 ∆m2
12/|∆m2

23| Ue3 tan2 θ12 tan2 θ23
A ε = 1 O(1) O(1) O(1) O(1) O(1)

SA ε = λ O(1) O(d223) O(λ) O(λ2/d223) O(1)

HII ε = λ2 O(λ2) O(λ4) O(λ2) O(1) O(1)

HI ε = λ2 0 O(λ6) O(λ2) O(1) O(1)

IH (LA) ε = η = λ O(λ4) O(λ2) O(λ2) 1+O(λ2) O(1)

IH (LOW) ε = η = λ2 O(λ8) O(λ4) O(λ4) 1+O(λ4) O(1)

Table 2: Order of magnitude predictions for oscillation parameters, from neutrino mass matrices

in eq. (2.2) and (2.3) [1]; d23 denotes the sub-determinant in the 23 sector and we show the effect of

its accidental suppression for the semi-anarchical model. In the estimates we have chosen λ = λ′.

Inverse hierarchy predicts an almost maximal θ12.

Another important ingredient in our analysis is represented by the see-saw mecha-

nism [18]. Hierarchical models and semi-anarchical models have similar charges in the

(10, 5̄) sectors and, in the absence of the see-saw mechanism, they would give rise to simi-

lar results. Even when the results are expected to be independent from the charges of the

RH neutrinos, as it is the case for the anarchical and semi-anarchical models, the see-saw

mechanism can induce some sizeable effect in a statistical analysis. For this reason, for

each type of model, but the hierarchical ones (the mechanism for the 23 sub-determinant

suppression is in fact based on the see-saw mechanism), we will separately study the case

where RH neutrinos are present and the case where they are absent. When RH neutrinos

are present, there are two independent contributions to the light neutrino mass matrix.

One of them comes via the see-saw mechanism from the exchange of the heavy RH modes.

The other one is provided by L-violating dimension five operators arising from physics

beyond the cut-off. These contributions have the same transformation properties under

the flavour group and, in general, add coherently. In our analysis we will analyze the case

where the see-saw contribution is the dominant one (SS). The absence of RH neutrinos

describes the opposite case, when the mass matrix is saturated by the non-renormalizable

contribution (NOSS).

For each type of model we have selected what we consider to be a typical representative2

and we have collected in table 1 the corresponding charges. In the next section we will

compare the performances of the following models: ASS, ANOSS, SASS, SANOSS, H(SS,I),

H(SS,II), IH(SS,I), IH(SS,II), IH(NOSS,I) and IH(NOSS,II).

Anarchical, semi-anarchical and hierarchical models give rise to a mass matrix for light

neutrinos of the type

mν =





ε2 ε ε

ε 1 1

ε 1 1



 (A,SA,H) , (2.2)

where all the entries are specified up to order one coefficients and the overall mass scale

has been conventionally set to one. For anarchical models, ε = 1. Then all the entries

2We made no real optimization effort to pick up the ‘most’ representative, but rather a model with a

high success rate in its class.
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are uncorrelated numbers of order one and no particular pattern becomes manifest. For

the semi-anarchical model of table 1, ε = λ. There is a clear distinction between the

first row and column and the 23 block of the mass matrix, which is structureless as in

the anarchical models. In particular, barring accidental cancellations, the sub-determinant

in the 23 sector is of order one. Finally, the hierarchical model defined by the choice of

charges in table 1, has ε = λ2. At variance with the anarchical or semi-anarchical models,

the determinant of the 23 sector is suppressed by the see-saw mechanism and is of order

λλ′.

The inversely hierarchical models are characterized by a neutrino mass matrix of the

kind

mν =





ε2 1 1

1 η2 η2

1 η2 η2



 (IH) , (2.3)

where ε = λ (λ2) and η = λ′ (λ′2) for the LA (LOW) solution. The ratio between the solar

and atmospheric oscillation frequencies is not directly related to the sub-determinant of

the block 23, in this case. The above mass matrices also receive an additional contribution

from the diagonalization of the charged lepton sector, which, however, does not spoil the

displayed structure. For completeness, we collect in table 2 the gross features of the models

under consideration. Notice that the hierarchical models predict a ratio ∆m2
12/|∆m2

23| of
order λ4 or λ6. In these cases it is possible to fit both the LOW and the LA solutions

with an expansion parameter λ ≈ λ′ that, within a factor of two, matches the Cabibbo

angle. On the contrary, the inversely hierarchical model that reproduces the LA solution

favours ∆m2
12/|∆m2

23| ≈ O(λ2). If we adopt this model to fit also the LOW solution, the

corresponding values of λ ≈ λ′ do not provide a decent description of the remaining fermion

masses. For this reason, when analyzing the LOW solution, we have considered a separate

set of charges for the inverted hierarchy.

3. Method and results

Abelian flavour symmetries predict each entry of fermion mass matrices up to an unknown

dimensionless coefficient. These coefficients, that are free-parameters of the theory, are

expected to have absolute values of order one. Aside from generalized kinetic terms, which

we do not consider, the relevant mass matrices are specified by N = 24 order one param-

eters: 9 from the charged lepton sector, 9 from Dirac neutrino mass matrix entries and 6

from Majorana RH neutrino mass matrices. When RH neutrinos are absent (that is, for

the NOSS cases) the LH neutrino mass matrix contains 6 parameters and the relevant set

reduces to N = 15 parameters. We have analyzed the case of real or complex coefficients

P = (P1, . . .PN ), with absolute values generated as random numbers in an interval I and

random phases taken in [0, 2π]. To study the dependence of our results on I, we have con-

sidered several possibilities: [0.5, 2] (default), [0.8, 1.2], [0.95, 1.05] and [0, 1]. In the case of

real coefficients, which is studied for comparison, we allow both signs for the coefficients.

For each model, only a portion VS of the volume V = (2πI)N of the parameter space gives

rise to predictions in agreement with the experimental data within the existing uncertain-
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ties. We may interpret VS/V as the success rate of the model in describing neutrino data.

Clearly this portion shrinks to zero for infinitely good measurements. Therefore we are not

interested in its absolute size, but rather in the relative sizes of VS/V in different models.

We evaluate the success rate of each model by considering, through a random genera-

tion, a large number of ‘points’ P and by checking whether the corresponding predictions

do or do not fall in the experimentally allowed regions [16]. To this purpose we per-

form a test based on four observable quantities: O1 = r ≡ ∆m2
12/|∆m2

23|, O2 = tan2 θ12,

O3 = |Ue3| ≡ | sin θ13| and O4 = tan2 θ23. We take [19]:

4 · 10−6 < r < 4 · 10−5
|Ue3| < 0.2

0.52 < tan2 θ12 < 1.17

0.33 < tan2 θ23 < 3.3

(LOW) (3.1)

0.01 < r < 0.2

|Ue3| < 0.2

0.24 < tan2 θ12 < 0.89

0.33 < tan2 θ23 < 3.3

(LA) (3.2)

The boundaries of these windows are close to the 3σ limits on the corresponding observable

quantity. The test is successfully passed if Oi(P) are in the above windows, for all i =

1, . . . , 4. We will study the dependence on the choice made in eqs. (3.1,3.2), by analyzing

the distributions of the points generated for each observable. We then estimate VS/V from

the ratio between the number of successful trials over the total number of attempts. Notice

that we do not extend our test to the remaining fermion masses and mixing angles, though

the models considered can also reproduce, at the level of order of magnitudes, charged

lepton masses, quark masses and mixing angles. With the interval I fixed at its reference

value, [0.5, 2], the different models are compared at their best performance, after optimizing

for each model the value of the symmetry breaking parameters λ and λ′.

3.1 LOW solution

In figure 1 we compare the success rates for the LOW solution. In this figure the anarchical

or semi-anarchical models do not appear simply because their rates of success are negligible

on the scale of the figure.

It is clear that, if the future experimental results will indicate the LOW solution as the

preferred one, then anarchical or semi-anarchical schemes will be completely inadequate

to describe the data. It would be natural in that case to adopt a model where the large

gap between the atmospheric and the solar oscillation frequencies is built in as a result

of a symmetry. What is striking about the results displayed in figure 1 is the ability of

the IH models, both in the SS and in the NOSS versions, to reproduce the data. An

appropriate choice for λ (λ′) is completely successful in reproducing r. Ue3 is numerically

close to r and easily respects the present bound. Moreover, tan2 θ12 is very close to 1, due

to the pseudo-Dirac structure of the 12 sector. Only the tan2 θ23 distribution shows some

flatness and contributes to deplete the success rate. It is worth stressing that tan2 θ12 is
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Figure 1: Relative success rates for the LOW solution. The sum of the rates has been normalized

to 100. The results correspond to the default choice I = [0.5, 2], and to the following values of

λ = λ′: 0.1, 0.15, 0.03, 0.04, 0.05, 0.06 for the models H(SS,II), H(SS,I), IH(SS,II), IH(SS,I), IH(NOSS,II)

and IH(NOSS,I), respectively. The error bars represent the linear sum of the systematic error due to

the choice of I and the statistical error (see text). The results for the A and SA models are below

0.01, independently from I and from (λ, λ′), and are not displayed.

so strongly peaked around 1, that any significant deviation from tan2 θ12 = 1 in the data

would provide a severe difficulty for the IH schemes. The H model has a smaller success

rate (still much larger than that of the A and SA models), but has smoother distributions

for the four observables and is less sensitive than IH to variations of the experimental

data. The error bars in figure 1 are dominated by the systematic effects, which have been

estimated by varying the interval I. We considered four possibilities: I = [0.5, 2] (default),

I = [0.8, 1.2], I = [0.95, 1.05], and I = [0, 1]. To the highest (lowest) rate of each model

we then add (subtract) linearly the statistical error. The latter is usually smaller than the

systematic error. Further details are reported in appendix A.

3.2 LA solution

The success rates for the LA solutions are displayed in figure 2 and 3, separately for the

NOSS and SS cases. The two sets of models have been individually normalized to give a

total rate 100. Before normalization the total success rates for NOSS and for SS were in

the ratio 1.7:1 (see also appendix A). Although the gaps between the rates of different

models are reduced compared to the LOW case, nevertheless a clear pattern emerges from

these figures. The present data are most easily described by the IH schemes in their

NOSS version. Their performances are better by a factor of 10-30 with respect to the last

classified, the anarchical models. The ability of the IH schemes in describing the data can

be appreciated from the distributions of the four observables, which, for IH(NOSS,II) and

λ = λ′ = 0.25, are displayed in figure 4.

The observables r and Ue3 are strongly correlated. Actually, as discussed in ref. [1, 20]

and shown in table 2, in inversely hierarchical models Ue3 is typically of order r. There-

fore, once λ and λ′ have been tuned to fit r, this choice automatically provides a good fit
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Figure 2: Relative success rates for the LA solution, without see-saw. The sum of the rates has

been normalized to 100. The results correspond to the default choice I = [0.5, 2], and to the

following values of λ = λ′: 0.2, 0.2, 0.25, 0.3 for the models ANOSS, SANOSS, IH(NOSS,II), and

IH(NOSS,I), respectively (in our notation there are no H(NOSS,I), H(NOSS,II) models). The error bars

represent the linear sum of the systematic error due to the choice of I and the statistical error (see

text).
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Figure 3: Relative success rates for the LA solution, with see-saw. The sum of the rates has been

normalized to 100. The results correspond to the default choice I = [0.5, 2], and to the following

values of λ = λ′: 0.2, 0.3, 0.35, 0.5, 0.15, 0.2 for the models ASS, SASS, H(SS,II), H(SS,I), IH(SS,II)

and IH(SS,I), respectively. The error bars represent the linear sum of the systematic error due to

the choice of I and the statistical error (see text).

to Ue3. Moreover, similarly to the case of the LOW solution, tan2 θ12 is peaked around

1. At present tan2 θ12 = 1 is excluded for the LA solution, but, thanks to the width of

the distribution, the experimentally allowed window is sufficiently populated. The width

of the distribution is almost entirely dominated by the effect coming from the diago-

nalization of the charged lepton sector. Indeed, by turning off the small parameters λ

and λ′ in the mass matrix for the charged leptons, we get a vanishing success rate for

IH(NOSS,I), whereas the rate for IH(NOSS,II) decreases by more than one order of magni-

tude. It is worth stressing that even a moderate further departure of the window away
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Figure 4: Distributions for IH(NOSS,II), I = [0.5, 2], λ = λ′ = 0.25, obtained with 10000 points P .
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Figure 5: Scatter plots in the planes (Ue3, r), (tan
2 θ12, r) and (tan2 θ23, r) for IH(NOSS,II), I =

[0.5, 2], λ = λ′ = 0.25, obtained with 1000 points P . The box shows the experimental window

for LA.

from tan2 θ12 = 1 could drastically reduce the success rates of the IH schemes. Finally,

the tan2 θ23 distribution is rather flat, with a moderate peak in the currently favoured

interval. All the IH models, with or without see-saw, have distributions similar to those

shown in figure 4. In particular the tan2 θ23 distribution of figure 4 is qualitatively com-

mon to all U(1) models. This reflects the fact that the large angle θ23 is induced by

the equal charges F(5̄2) = F(5̄3), a feature shared by all the models we have consid-

ered. To appreciate the relevant correlations, the distributions for the model IH(NOSS,II)

are also displayed in figure 5, as scatter plots in the planes (Ue3, r), (tan2 θ12, r) and

(tan2 θ23, r).

– 11 –



J
H
E
P
0
1
(
2
0
0
3
)
0
3
5

SANOSS

1 10
tan2 Θ12

1
2
3
4
5
6
7
8
P %

1 10
tan2 Θ23

1

2

3

4

5

6
P %

10-6 10-5 10-4 10-3 10-2 10-1 1
r

5

10

15

20

25

30
Pr %

0.2 0.4 0.6 0.8 1
Ue3

2
4
6
8

10
12
14
16

P %

Figure 6: Distributions for the semi-anarchical no-see-saw SANOSS, I = [0.5, 2], λ = λ′ = 0.2,

obtained with 10000 points P .
Without see-saw mechanism, the next successful model is the semi-anarchical model

SA, whose distributions are displayed in figure 6 (in our notation there are no HNOSS,I(II)

models). Compared to the IH case, the tan2 θ12 distribution has no pronounced peak.

Possible shifts in the central value of tan2 θ12 would not drastically modify the results

for the SA model. The Ue3 distribution is peaked around λ = 0.2 with tails that exceed

the present experimental bound. The r distribution is centered near r = 1. Finally, the

anarchical scheme in its NOSS version is particularly disfavoured, due to its tendency to

predict r close to 1 and also due to Ue3, that presents a broad distribution with a preferred

value of about 0.5.

The overall picture changes significantly if the LA solution is realized in the context of

the see-saw mechanism, as illustrated in figure 3. The IH models are still rather successful.

Compared to the NOSS case, the IHSS models slightly prefer higher values of r and, due to

a smaller λ = λ′, they have very narrow tan2 θ12 distributions. This can be seen from the

scatter plots of figure 7. The other distributions are similar to those of figs. 4 and 5. We

observe that while most of the points in figure 7 are centered around Ue3 ≈ O(λ2), there

is also a small region clustered at Ue3 ≈ 0.6.

Equally good or even better results are obtained by the H(SS,II) model, with distribu-

tions shown in figure 8 and 9. We see that, at variance with the IH models, tan2 θ12 is not

spiky, which results in a better stability of the model against variation of the experimental

results. The preferred value of r is close to the lower end of the experimental window. The

Ue3 distribution is nicely peaked around λ2.

The SASS model is significantly outdistanced from H(SS,II), IH(SS,II) and IH(SS,I). It is

particularly penalized by the Ue3 distribution, centered around λ = 0.3. Finally, the least

favoured models are H(SS,I) and ASS. The model H(SS,I) fails both in Ue3 (see figure 10),
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Figure 7: Scatter plots in the planes (Ue3, r), (tan
2 θ12, r) and (tan2 θ23, r) for IH(SS,II), I = [0.5, 2],

λ = λ′ = 0.15, obtained with 1000 points P . The box shows the experimental window for LA.
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Figure 8: Distributions for H(SS,II), I = [0.5, 2], λ = λ′ = 0.35, obtained with 50000 points P .

which tends to be too large for the preferred value of λ = λ′ = 0.5 and in tan2 θ12. The

ASS model, as its NOSS version, suffers especially from the Ue3 distribution (see figure 10)

which is roughly centered at 0.5, with only few percent of the attempts falling within the

present experimental bound. A large Ue3 can be regarded as a specific prediction of anarchy

and any possible improvement of the bound on |Ue3| will wear away the already limited

success rate of the model. The distributions in tan2 θ12 and tan2 θ23 are equally broad

and peaked around 1. Compared to the NOSS case, ASS has a better r distribution, well

located inside the allowed window.

As another criterion for evaluating the quality of a model, we address the issue of the

stability of the observables Oi with respect to small fluctuations of the set of coefficients

P. Notice that the random coefficients to be put in front of the powers of λ, λ′ stand for

the combined result of a fundamental theory of flavour, present at a certain scale Λ, and
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Figure 10: Ue3 Distributions for H(SS,I) (λ = λ′ = 0.5) and ASS (λ = λ′ = 0.2), I = [0.5, 2],

obtained with 50000 points P .

of an evolution from Λ down to mZ . It would thus be natural if the physical observables

Oi were stable under small perturbations of the coefficients, ∆P, around a given successful

representative set P0.
This is illustrated for the seesaw case in figure 11, where we compare the models

IH(SS,II), H(SS,II) and ASS. The blue dot refers to the observables Oi which follow from a

typical successful configuration for LA, P0. The 40 points in red, light blue and green are the

result of adding to P0 random perturbations ∆P with |∆P| = |P|/10 and random phases.

The yellow dots correspond to |∆P| = |P|/2. As appears from the scatter plots, IH(SS,II) is

very stable: as already argued in the above discussion, actually it is even dangerously stable

with respect to the prediction for tan2 θ12. If models with hierarchy display a sufficient

degree of stability, anarchical ones are much less stable, in particular with respect to the

predictions for Ue3 and tan2 θ12. As shown in figure 12, the non see-saw case enhances these

features: IH(NOSS,II) is extremely stable, while ANOSS is higly unstable. For the latter, in

particular, even with the small fluctuation considered in the figures, tan2 θ12 spans from

.1 to 10. Thus, the criterion of stability supports the same ratings of models previously

obtained by only considering total rates and distributions.
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Figure 11: Results of the stability test in the planes (Ue3, r), (tan
2 θ12, r) and (tan2 θ23, r) for

IH(SS,II) (λ = λ′ = 0.15), H(SS,II) (λ = λ′ = 0.35) and ASS (λ = λ′ = 0.2), I = [0.5, 2] (see text).

As a general comment we observe that our results are rather stable with respect to the

choice of the interval I. With only one exception, namely the crossing between H(SS,I) and

ASS , the relative position of the different models, according to their ability in describing the

data, does not vary when we shrink I, or when we extend it to cover the full circle of radius

1.3 This stability would be partially upset by restricting to the case of real coefficients P.
In that case the relative rates are comparable to those obtained in the complex case only

for sufficiently wide intervals I, typically I ≈ [−1/
√
λ,−
√
λ] ∪ [

√
λ, 1/

√
λ]. If we further

squeeze I around ±1 the rates of all models tend to zero. In the real case, the distribution

of tan2 θ23 is very sensitive to the width of the extraction interval I. Indeed, in the flavour

symmetry basis, charged leptons and light neutrinos mass matrices are both diagonalised

by a 23 mixing angle which tends to π/4 when I is squeezed to 1. As an effect, in this

limit the distribution of θ23 is almost empty around π/4 and presents two peaks at 0 and

3The results for I = [0, n] are independent on n, since changing n amounts to perform a renormalization

of all mass matrices by a common overall scale, which is not felt by the observables we have used in our

analysis.
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Figure 12: Results of the stability test in the planes (Ue3, r), (tan
2 θ12, r) and (tan2 θ23, r) for

IH(NOSS,II) (λ = λ′ = 0.25) and ANOSS (λ = λ′ = 0.2), I = [0.5, 2] (see text).

π/2. On the contrary, in the complex case the distribution of θ23 is quite insensitive to the

width of I thanks to the smearing effect of the phases.

4. Conclusion

If a large gap between the solar and atmospheric frequencies for neutrino oscillations were

finally to be established by experiment then this fact would immediately suggest that neu-

trino masses are hierarchical, similar to quark and charged lepton masses. In fact very

small mass squared differences among nearly degenerate neutrino states are difficult to

obtain and make stable under running in the absence of an ad hoc symmetry. More-

over, the presence of very small mixing angles would also indicate a hierarchical pattern.

At present, the SA solution of solar neutrino oscillations is disfavoured so that 2 out

of 3 mixing angles appear to be large and only one appears to be small, although the

present limit is not terribly constraining. However, in the case of the LA solution for

solar neutrino oscillations, the ratio r of the solar to atmospheric frequencies is not so

small and it has been suggested that possibly this solution does not require a symme-

try to be generated. In the anarchical framework the smallness of Ue3, assumed not too

pronounced, and that of r, are considered as accidental (the see-saw mechanism helps in

this respect because the product of 3 matrices sizeably broadens the r distribution). In

the present study we have examined in quantitative terms the relative merits of anarchy

and of different implementations of hierarchy in reproducing the observed features of the

LA solution. For our analysis we have adopted the framework of SU(5) × U(1)F which

is flexible enough, by suitable choices of the flavour charges, to reproduce all interesting

types of hierarchy and also of anarchy. This framework allows a statistical comparison
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of the different schemes under, as far as possible, homogeneous conditions. The rating

of models in terms of their statistical rates of success is clearly a questionable proce-

dure. After all Nature does not proceed at random and a particular mass pattern that

looks odd could arise due to some deep dynamical reason. However, the basis for anarchy

as a possible description of the LA solution can only be formulated in statistical terms.

Therefore it is interesting to compare anarchy versus hierarchy on the same grounds. We

have considered models both with normal and with inverse hierarchies, with and with-

out see-saw, with one or two flavons, and compared them with the case of anarchy and

of semi-anarchy (models where there is no structure in 2-3 but only in 2-3 vs. 1). The

stability of our results has been tested by considering different options for the statisti-

cal procedure and also by studying the effect on each type of model of small parameter

changes.

Our conclusion is that, for the LA solution, the range of r and the small upper

limit on Ue3 are sufficiently constraining to make anarchy neatly disfavoured with re-

spect to models with built-in hierarchy. If only neutrinos are considered, one might

counterargue that hierarchical models have at least one more parameter than anarchy,

in our case the parameter λ. However, if one looks at quarks and leptons together,

as in the GUT models that we consider, then the same parameter that plays the role

of an order parameter for the CKM matrix, for example, the Cabibbo angle, can be

successfully used to reproduce also the LA hierarchy. On the one hand, it is inter-

esting that the amount of hierarchy needed for the LA solution is just a small power

of the Cabibbo angle. On the other hand, if all fermion masses and mixings are to

be reproduced, a similar parameter is also needed in anarchical models, where all the

quark and lepton mass structure arises from the charges of Ψ10
i . In comparison to an-

archy even the limited amount of structure present in semi-anarchical models already

improves the performance a lot. And the advantage is further increased when more

structure is added as in inverse hierarchy models, or models with normal hierarchy and

automatic suppression of the 23 determinant. In the see-saw case all these types of

hierarchical models have comparable rates of success (except for H(SS,I)). In the non-

see-saw versions of inverse hierarchy the performance is even better. An experimental

criterion that could eventually decide between normal and inverse hierarchy models is

the closeness of the solar angle θ12 to its maximal value. If the data moves away from

π/4 the probability of inverse hierarchy will rapidly drop in comparison to hierarchical

models.
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A. Raw data

In this section we list the results of our numerical analysis, for the case of complex random

coefficients P. In particular we detail the dependence of the success rates on the size of

the window I that specifies the absolute value of the coefficients P. In most cases the

‘systematic’ error due to the choice of I is larger than the statistical error. The latter is

given by δP/P = 1/
√
Ns, where P = 100 ·Ns/N is the success rate and Ns is the number

of successes in N trials. We chose N = 10000, 30000, 50000 respectively, for the LOW

solution, for LA without see-saw and for LA with see-saw. When fitting the LOW solution,

the results for the anarchical and semi-anarchical models do not depend on λ or λ ′.

success rate

model λ(= λ′) I = [0.5, 2] I = [0.8, 1.2] I = [0.95, 1.05] I = [0, 1]

ASS - < 0.01 < 0.01 < 0.01 < 0.01

SASS - < 0.01 < 0.01 < 0.01 < 0.01

H(SS,II) 0.1 1.7 ± 0.1 2.8 ± 0.2 2.8± 0.2 1.6± 0.1

H(SS,I) 0.15 14.4± 0.4 21.6± 0.5 23.0 ± 0.5 7.6± 0.3

IH(SS,II) 0.03 41.6± 0.6 30.3± 0.6 29.0 ± 0.5 31.2 ± 0.6

IH(SS,I) 0.04 42.9± 0.7 32.8± 0.6 31.6 ± 0.6 32.0 ± 0.6

Table 3: Success rates for the LOW solution, with the see-saw mechanism.

success rate

ANOSS - < 0.01 < 0.01 < 0.01 < 0.01

SANOSS - < 0.01 < 0.01 < 0.01 < 0.01

IH(NOSS,II) 0.05 43.4 ± 0.7 33.3 ± 0.6 32.1 ± 0.6 42.9 ± 0.7

IH(NOSS,I) 0.06 46.1 ± 0.7 36.5 ± 0.6 35.5 ± 0.6 38.8 ± 0.6

Table 4: Success rates for the LOW solution, without the see-saw mechanism.

success rate

ANOSS 0.2 0.33 ± 0.03 0.23 ± 0.03 0.25 ± 0.03 0.26 ± 0.03

SANOSS 0.2 2.5 ± 0.1 2.9 ± 0.1 2.6 ± 0.1 2.5 ± 0.1

IH(NOSS,II) 0.25 11.4 ± 0.2 8.8 ± 0.2 8.2 ± 0.2 10.2± 0.2

IH(NOSS,I) 0.3 10.0 ± 0.2 7.9 ± 0.2 7.7 ± 0.2 8.4 ± 0.2

Table 5: Success rates for the LA solution, without see-saw mechanism.
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success rate

model λ(= λ′) I = [0.5, 2] I = [0.8, 1.2] I = [0.95, 1.05] I = [0, 1]

ASS 0.2 0.69 ± 0.04 0.62 ± 0.04 0.63 ± 0.04 0.63± 0.04

SASS 0.3 2.30 ± 0.07 2.12 ± 0.07 2.07 ± 0.06 1.99± 0.06

H(SS,II) 0.35 4.33 ± 0.09 4.35 ± 0.09 4.34 ± 0.09 2.36± 0.07

H(SS,I) 0.5 0.58 ± 0.03 0.88 ± 0.04 0.97 ± 0.04 0.27± 0.02

IH(SS,II) 0.15 3.92 ± 0.09 3.97 ± 0.09 4.06 ± 0.09 2.57± 0.07

IH(SS,I) 0.2 2.58 ± 0.07 2.24 ± 0.07 2.07 ± 0.06 2.26± 0.07

Table 6: Success rates for the LA solution, with see-saw mechanism.
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