90 research outputs found

    Optical quenching and recovery of photoconductivity in single-crystal diamond

    Full text link
    We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing

    Flexible Graphene Solution-Gated Field-Effect Transistors : Efficient Transducers for Micro-Electrocorticography

    Get PDF
    Brain-computer interfaces and neural prostheses based on the detection of electrocorticography (ECoG) signals are rapidly growing fields of research. Several technologies are currently competing to be the first to reach the market; however, none of them fulfill yet all the requirements of the ideal interface with neurons. Thanks to its biocompatibility, low dimensionality, mechanical flexibility, and electronic properties, graphene is one of the most promising material candidates for neural interfacing. After discussing the operation of graphene solution-gated field-effect transistors (SGFET) and characterizing their performance in saline solution, it is reported here that this technology is suitable for μ-ECoG recordings through studies of spontaneous slow-wave activity, sensory-evoked responses on the visual and auditory cortices, and synchronous activity in a rat model of epilepsy. An in-depth comparison of the signal-to-noise ratio of graphene SGFETs with that of platinum black electrodes confirms that graphene SGFET technology is approaching the performance of state-of-the art neural technologies

    Concept of novel CVD diamond high voltage, high power and study of ohmic contacts on diamond

    No full text
    International audienceDiamond exceptional electronic and thermal properties make it a very promising material for future applications in power electronics, especially for high voltage and/or high temperature applications. In this paper, the principle of high power, high voltage switches that take advantage of these properties are illustrated by simulations. Technological steps necessary to their fabrication have been developed. We present heavily B-doped layers, the way we characterized them and ohmic contacts deposited on them
    corecore