56 research outputs found
Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona
Phosphorus zoning is observed in olivines in high-FeO (type IIA) chondrules in H chondrites over the entire range of petrologic grades: H3.1–H6. Features in P concentrations such as oscillatory and sector zoning, and high P cores are present in olivines that are otherwise unzoned in the divalent cations. Aluminum concentrations are low and not significantly associated with P zoning in chondrule olivines. In highly unequilibrated H chondrites, phosphorus zoning is generally positively correlated with Cr. Atomic Cr:P in olivine is roughly 1:1 (3:1 for one zone in one olivine in RC 075), consistent with Cr^(3+) charge-balancing P^(5+) substituting for Si^(4+). Normal igneous zonation involving the dominant chrome species Cr^(2+) was observed only in the LL3.0 chondrite Semarkona. In more equilibrated chondrites (H3.5–H3.8), Cr spatially correlated with P is occasionally observed but it is diffuse relative to the P zones. In H4–H6 chondrites, P-correlated Cr is absent. One signature of higher metamorphic grades (≥H3.8) is the presence of near matrix olivines that are devoid of P oscillatory zoning. The restriction to relatively high metamorphic grade and to grains near the chondrule–matrix interface suggests that this is a response to metasomatic processes. We also observed P-enriched halos near the chondrule–matrix interface in H3.3–H3.8 chondrites, likely reflecting the loss of P and Ca from mesostasis and precipitation of Ca phosphate near the chondrule surface. These halos are absent in equilibrated chondrites due to coarsening of the phosphate and in unequilibrated chondrites due to low degrees of metasomatism. Olivines in type IA chondrules show none of the P-zoning ubiquitous in type IIA chondrules or terrestrial igneous olivines, likely reflecting sequestration of P in reduced form within metallic alloys and sulfides during melting of type IA chondrules
Intra- and Intercrystalline Oxygen Isotope Variations in Minerals from Basalts and Peridotites
Igneous phenocrysts commonly exhibit zoning in major and trace element composition, reflecting (and potentially constraining) the differentiation and/or mixing histories of their parent melts. To date, little work has been done characterizing zonation of oxygen isotopes in minerals from mafic and ultramafic rocks. We present 259 ion probe (CAMECA ims-1280) measurements of δ^(18)O in 34 natural magmatic and mantle olivines and pyroxenes from five hand samples from diverse igneous environments. We compare δ^(18)O variations with zonation in other elements [especially P; analyzed by electron microprobe analysis (EMPA) and nano-secondary ionization mass spectrometry (nanoSIMS)]. There is generally a close (average within ~0·1–0·2 ‰) agreement between average δ^(18)O values of olivines measured by SIMS (standardized against San Carlos olivine) and independently known values for bulk separates from the same samples measured by laser fluorination. These data demonstrate that current ion microprobe techniques are not only precise but also accurate enough for study of sub-per-mil oxygen isotope variations in silicates (within ~0·2 ‰), provided samples are prepared and analyzed following strict guidelines. All but one of the 34 studied grains are homogeneous in δ^(18)O within a small multiple of analytical precision [estimated ±0·2‰, 1σ for most data; poorer for a subset of measurements made on small (~5 µm) spots]. This population of isotopically homogeneous grains includes some with oscillatory micrometer-scale P banding. The lack of δ^(18)O variations suggests that whatever factors lead to this common mode of trace element zonation have no detectable effect on melt–crystal partitioning of oxygen isotopes. Large (2‰) oxygen isotope variations are observed in one olivine glomerocryst from Mauna Kea, Hawaii. This glomerocryst contains P-rich domains that are either equant or skeletal or feathery in outline, and these P-rich domains are systematically low in δ^(18)O compared with adjacent, later-grown, P-poor olivine. This unusual oxygen isotope zonation pattern might reflect a kinetic fractionation during nucleation and growth of the cores of some olivine phenocrysts. We tested this hypothesis through measurements of δ^(18)O distributions in synthetic olivines grown at a range of rates and exhibiting diverse patterns of P zoning. These synthetic olivines are homogeneous in δ^(18)O, within the limits of our analyses (± 0·3–0·4‰ in this case) and show no connection between P zonation and oxygen isotope heterogeneity. We therefore think it more plausible that unusual O isotope zonation in the Mauna Kea glomerocryst reflects addition of a low-δ^(18)O component to some Hawaiian magmas just before nucleation of olivine. More generally, this study demonstrates the utility of modern SIMS techniques for in situ study of the subtle (~1‰ range) oxygen isotope variations characteristic of common mafic and ultramafic rocks
Recommended from our members
Curie: Constraining Solar System Bombardment Using In Situ Radiometric Dating
The Curie mission would constrain the existence of the putative cataclysm by determining the age of samples directly sourced from the impact melt sheet of a major pre-Imbrium lunar basin. The measurements would also enable further understanding of lunar evolution by characterizing new lunar lithologies far from the Apollo and Luna landing sites, including the very low-Ti basalts in Mare Crisium and potential olivine rich lithologies in the margins of both Mare Nectaris and Mars Crisium. Equipped with a mass spectrometer and a LIBS, Curie would also be well-placed to survey volatile components of the lunar regolith, including surface-bound hydrogen
Constraining Solar System Bombardment Using In Situ Radiometric Dating
The leading, but contentious, model for lunar impact history includes a pronounced increase in impact events at around 3.9 Ga. This late heavy bombardment would have scarred Mars and the terrestrial planets, influenced the course of biologic evolution on the early Earth, and rearranged the very architecture of our Solar System. But what if it's not true? In the last decade, new observations and sample analyses have reinterpreted basin ages and "pulled the pin" on the cataclysm - we may only have the age of one large basin (Imbrium). The Curie mission would constrain the onset of the cataclysm by determining the age of a major pre-Imbrium lunar basin (Nectaris or Crisium), characterize new lunar lithologies far from the Apollo and Luna landing sites, including the basalts in the basin-filling maria and olivine-rich lithologies in the basin margins, and provide a unique vantage point to assess volatiles in the lunar regolith from dawn to dusk
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse: MAFIC MAGMATISM FACILITATED BY VOLCANIC EDIFICE COLLAPSE
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse
Rapid onset of mafic magmatism facilitated by volcanic edifice collapse
Volcanic edifice collapses generate some of Earth's largest landslides. How such unloading affects the magma storage systems is important for both hazard assessment and for determining long-term controls on volcano growth and decay. Here we present a detailed stratigraphic and petrological analyses of volcanic landslide and eruption deposits offshore Montserrat, in a subduction zone setting, sampled during Integrated Ocean Drilling Program Expedition 340. A large (6–10 km3) collapse of the Soufrière Hills Volcano at ~130 ka was followed by explosive basaltic volcanism and the formation of a new basaltic volcanic center, the South Soufrière Hills, estimated to have initiated <100 years after collapse. This basaltic volcanism was a sharp departure from the andesitic volcanism that characterized Soufrière Hills' activity before the collapse. Mineral-melt thermobarometry demonstrates that the basaltic magma's transit through the crust was rapid and from midcrustal depths. We suggest that this rapid ascent was promoted by unloading following collapse
Hazardous explosive eruptions of a recharging multi-cyclic island arc caldera
Caldera-forming eruptions of silicic volcanic systems are among the most
devastating events on Earth. By contrast, post-collapse volcanic activity
initiating new caldera cycles is generally considered less hazardous.
Formed after Santorini’s latest caldera-forming eruption of ~1600 bce, the
Kameni Volcano in the southern Aegean Sea enables the eruptive evolution
of a recharging multi-cyclic caldera to be reconstructed. Santorini’s
eruptive record has been documented by onshore products and historical
descriptions of mainly effusive eruptions dating back to 197 bce. Here we
combine high-resolution seismic reflection data with cored lithologies
from International Ocean Discovery Program Expedition 398 at four sites to
determine the submarine architecture and volcanic history of intra-caldera
deposits from Kameni. Our shore-crossing analysis reveals the deposits
of a submarine explosive eruption that produced up to 3.1 km3
of pumice
and ash, which we relate to a historical eruption in 726 ce. The estimated
volcanic explosivity index of magnitude 5 exceeds previously considered
worst-case eruptive scenarios for Santorini. Our finding that the Santorini
caldera is capable of producing large explosive eruptions at an early stage
in the caldera cycle implies an elevated hazard potential for the eastern
Mediterranean region, and potentially for other recharging silicic calderas
Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: First scientific drilling of submarine volcanic island landslides by IODP Expedition 340
IODP Expedition 340 successfully drilled a series of sites offshore Montserrat, Martinique and Dominica in the Lesser Antilles from March to April 2012. These are among the few drill sites gathered around volcanic islands, and the first scientific drilling of large and likely tsunamigenic volcanic island-arc landslide deposits. These cores provide evidence and tests of previous hypotheses for the composition and origin of those deposits. Sites U1394, U1399, and U1400 that penetrated landslide deposits recovered exclusively seafloor-sediment, comprising mainly turbidites and hemipelagic deposits, and lacked debris avalanche deposits. This supports the concepts that i/ volcanic debris avalanches tend to stop at the slope break, and ii/ widespread and voluminous failures of pre-existing low-gradient seafloor sediment can be triggered by initial emplacement of material from the volcano. Offshore Martinique (U1399 and 1400), the landslide deposits comprised blocks of parallel strata that were tilted or micro-faulted, sometimes separated by intervals of homogenized sediment (intense shearing), while Site U1394 offshore Montserrat penetrated a flat-lying block of intact strata. The most likely mechanism for generating these large-scale seafloor-sediment failures appears to be propagation of a decollement from proximal areas loaded and incised by a volcanic debris avalanche. These results have implications for the magnitude of tsunami generation. Under some conditions, volcanic island landslide deposits comprised of mainly seafloor sediment will tend to form smaller magnitude tsunamis than equivalent volumes of subaerial block-rich mass flows rapidly entering water. Expedition 340 also successfully drilled sites to access the undisturbed record of eruption fallout layers intercalated with marine sediment which provide an outstanding high-resolution dataset to analyze eruption and landslides cycles, improve understanding of magmatic evolution as well as offshore sedimentation processes. This article is protected by copyright. All rights reserved
Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management
Atrioventricular block is classified as congeni-
tal if diagnosed in utero, at birth, or within the first
month of life. The pathophysiological process is believed
to be due to immune-mediated injury of the conduction
system, which occurs as a result of transplacental pas-
sage of maternal anti-SSA/Ro-SSB/La antibodies.
Childhood atrioventricular block is therefore diagnosed
between the first month and the 18th year of life.
Genetic variants in multiple genes have been described
to date in the pathogenesis of inherited progressive car-
diac conduction disorders. Indications and techniques of
cardiac pacing have also evolved to allow safe perma-
nent cardiac pacing in almost all patients, including
those with structural heart abnormalities
Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body
Supereruptions violently transfer huge amounts (100 s–1000 s km3) of magma to the surface in a matter of days and testify to the existence of giant pools of magma at depth. The longevity of these giant magma bodies is of significant scientific and societal interest. Radiometric data on whole rocks, glasses, feldspar and zircon crystals have been used to suggest that the Bishop Tuff giant magma body, which erupted ∼760,000 years ago and created the Long Valley caldera (California), was long-lived (>100,000 years) and evolved rather slowly. In this work, we present four lines of evidence to constrain the timescales of crystallization of the Bishop magma body: (1) quartz residence times based on diffusional relaxation of Ti profiles, (2) quartz residence times based on the kinetics of faceting of melt inclusions, (3) quartz and feldspar crystallization times derived using quartz+feldspar crystal size distributions, and (4) timescales of cooling and crystallization based on thermodynamic and heat flow modeling. All of our estimates suggest quartz crystallization on timescales of <10,000 years, more typically within 500–3,000 years before eruption. We conclude that large-volume, crystal-poor magma bodies are ephemeral features that, once established, evolve on millennial timescales. We also suggest that zircon crystals, rather than recording the timescales of crystallization of a large pool of crystal-poor magma, record the extended periods of time necessary for maturation of the crust and establishment of these giant magma bodies
- …