13 research outputs found

    Warps, bending and density waves excited by rotating magnetized stars: results of global 3D MHD simulations

    Full text link
    We report results of the first global three-dimensional magnetohydrodynamic simulations of the waves excited in an accretion disc by a rotating star with a dipole magnetic field misaligned from the star's rotation axis (which is aligned with the disc axis). The main results are the following: (1) If the magnetosphere of the star corotates approximately with the inner disc, then we observe a strong one-armed bending wave (a warp). This warp corotates with the star and has a maximum amplitude between corotation radius and the radius of the vertical resonance. The disc's center of mass can deviate from the equatorial plane up to the distance of z_w\approx 0.1 r. However, the effective height of the warp can be larger, h_w \approx 0.3 r due to the finite thickness of the disc. Stars with a range of misalignment angles excite warps. However, the amplitude of the warps is larger for misalignment angles between 15 and 60 degrees. (2) If the magnetosphere rotates slower, than the inner disc, then a bending wave is excited at the disc-magnetosphere boundary, but does not form a large-scale warp. Instead, high-frequency oscillations become strong at the inner region of the disc. These are (a) trapped density waves which form inside the radius where the disc angular velocity has a maximum, and (b) inner bending waves which appear in the case of accretion through magnetic Raleigh-Taylor instability. These two types of waves are connected with the inner disc and their frequencies will vary with accretion rate. Bending oscillations at lower frequencies are also excited including global oscillations of the disc. In cases where the simulation region is small, slowly-precessing warp forms. Simulations are applicable to young stars, cataclysmic variables, and accreting millisecond pulsars.Comment: 26 pages, 25 figure

    Accretion, Outflows, and Winds of Magnetized Stars

    Full text link
    Many types of stars have strong magnetic fields that can dynamically influence the flow of circumstellar matter. In stars with accretion disks, the stellar magnetic field can truncate the inner disk and determine the paths that matter can take to flow onto the star. These paths are different in stars with different magnetospheres and periods of rotation. External field lines of the magnetosphere may inflate and produce favorable conditions for outflows from the disk-magnetosphere boundary. Outflows can be particularly strong in the propeller regime, wherein a star rotates more rapidly than the inner disk. Outflows may also form at the disk-magnetosphere boundary of slowly rotating stars, if the magnetosphere is compressed by the accreting matter. In isolated, strongly magnetized stars, the magnetic field can influence formation and/or propagation of stellar wind outflows. Winds from low-mass, solar-type stars may be either thermally or magnetically driven, while winds from massive, luminous O and B type stars are radiatively driven. In all of these cases, the magnetic field influences matter flow from the stars and determines many observational properties. In this chapter we review recent studies of accretion, outflows, and winds of magnetized stars with a focus on three main topics: (1) accretion onto magnetized stars; (2) outflows from the disk-magnetosphere boundary; and (3) winds from isolated massive magnetized stars. We show results obtained from global magnetohydrodynamic simulations and, in a number of cases compare global simulations with observations.Comment: 60 pages, 44 figure

    MRI-driven Accretion on to Magnetized stars: Global 3D MHD Simulations of Magnetospheric and Boundary Layer Regimes

    Full text link
    We discuss results of global 3D MHD simulations of accretion on to a rotating magnetized star with a tilted dipole magnetic field, where the accretion is driven by the magneto-rotational instability (MRI). The simulations show that MRI-driven turbulence develops in the disc, and angular momentum is transported outwards due primarily to the magnetic stress. The turbulent flow is strongly inhomogeneous and the densest matter is in azimuthally-stretched turbulent cells. We investigate two regimes of accretion: a magnetospheric regime and a boundary layer (BL) regime. In the magnetospheric regime, the accretion disc is truncated by the star's magnetic field within a few stellar radii from the star, and matter flows to the star in funnel streams. The funnel streams flowing towards the south and north magnetic poles but are not equal due to the inhomogeneity of the flow. In the BL regime, matter accretes to the surface of the star through the boundary layer. The magnetic field in the inner disc is strongly amplified by the shear of the accretion flow, and the matter and magnetic stresses become comparable. Accreting matter forms a belt-shaped region on the surface of the star. The belt has inhomogeneous density distribution which varies in time due to variable accretion rate. Results of simulations can be applied to classical T Tauri stars, accreting brown dwarfs, millisecond pulsars, dwarf novae cataclysmic variables, and other stars with magnetospheres smaller than several stellar radii.Comment: 15 pages, 13 figures, accepted by MNRA

    An Earth-mass planet orbiting alpha Centauri B

    No full text
    International audienceExoplanets down to the size of Earth have been found, but not in the habitable zone--that is, at a distance from the parent star at which water, if present, would be liquid. There are planets in the habitable zone of stars cooler than our Sun, but for reasons such as tidal locking and strong stellar activity, they are unlikely to harbour water-carbon life as we know it. The detection of a habitable Earth-mass planet orbiting a star similar to our Sun is extremely difficult, because such a signal is overwhelmed by stellar perturbations. Here we report the detection of an Earth-mass planet orbiting our neighbour star α Centauri B, a member of the closest stellar system to the Sun. The planet has an orbital period of 3.236 days and is about 0.04 astronomical units from the star (one astronomical unit is the Earth-Sun distance)
    corecore