142 research outputs found

    Origin of intermittent accretion-powered X-ray oscillations in neutron stars with millisecond spin periods

    Full text link
    We have shown previously that many of the properties of persistent accretion-powered millisecond pulsars can be understood if their X-ray emitting areas are near their spin axes and move as the accretion rate and structure of the inner disk vary. Here we show that this "nearly aligned moving spot model" may also explain the intermittent accretion-powered pulsations that have been detected in three weakly magnetic accreting neutron stars. We show that movement of the emitting area from very close to the spin axis to about 10 degrees away can increase the fractional rms amplitude from less than about 0.5 percent, which is usually undetectable with current instruments, to a few percent, which is easily detectable. The second harmonic of the spin frequency usually would not be detected, in agreement with observations. The model produces intermittently detectable oscillations for a range of emitting area sizes and beaming patterns, stellar masses and radii, and viewing directions. Intermittent oscillations are more likely in stars that are more compact. In addition to explaining the sudden appearance of accretion-powered millisecond oscillations in some neutron stars with millisecond spin periods, the model explains why accretion-powered millisecond oscillations are relatively rare and predicts that the persistent accretion-powered millisecond oscillations of other stars may become undetectable for brief intervals. It suggests why millisecond oscillations are frequently detected during the X-ray bursts of some neutron stars but not others and suggests mechanisms that could explain the occasional temporal association of intermittent accretion-powered oscillations with thermonuclear X-ray bursts.Comment: 5 pages, 1 figure; includes additional discussion and updated references; accepted for publication in ApJ

    Implications of kHz QPOs for the spin frequencies and magnetic fields of neutron stars: new results from Circinus X-1

    Full text link
    Detection of paired kilohertz quasi-periodic oscillations (kHz QPOs) in the X-ray emission of a compact object is compelling evidence that the object is an accreting neutron star. In many neutron stars, the stellar spin rate is equal or roughly equal to Delta-nu, the frequency separation of the QPO pair, or to 2Delta-nu. Hence, if the mechanism that produces the kilohertz QPOs is similar in all stars, measurement of Delta-nu can provide an estimate of the star's spin rate. The involvement of the stellar spin in producing Delta-nu indicates that the magnetic fields of these stars are dynamically important. We focus here on the implications of the paired kHz QPOs recently discovered in the low-mass X-ray binary (LMXB) system Cir X-1 (Boutloukos et al. 2006). The kHz QPOs discovered in Cir X-1 are generally similar to those seen in other stars, establishing that the compact object in the Cir X-1 system is a neutron star. However, the frequency nu-u of its upper kHz QPO is up to a factor of three smaller than is typical, and Delta-nu varies by about a factor 2 (167 Hz, the largest variation so far observed). Periodic oscillations have not yet been detected from Cir X-1, so its spin rate has not yet been measured directly. The low values of nu-u and the large variation of Delta-nu challenge current models of the generation of kHz QPOs. Improving our understanding of Cir X-1 will improve our knowledge of the spin rates and magnetic fields of all neutron stars.Comment: 3 pages, 3 figures, a table with all known accreting millisecond X-ray pulsars up to October 2007. To appear in "40 Years of Pulsars, Millisecond Pulsars, Magnetars and More" conference proceeding

    On mass-constraints implied by the relativistic precession model of twin-peak quasi-periodic oscillations in Circinus X-1

    Full text link
    Boutloukos et al. (2006) discovered twin-peak quasi-periodic oscillations (QPOs) in 11 observations of the peculiar Z-source Circinus X-1. Among several other conjunctions the authors briefly discussed the related estimate of the compact object mass following from the geodesic relativistic precession model for kHz QPOs. Neglecting the neutron star rotation they reported the inferred mass M_0 = 2.2 +/- 0.3 M_\sun. We present a more detailed analysis of the estimate which involves the frame-dragging effects associated with rotating spacetimes. For a free mass we find acceptable fits of the model to data for (any) small dimensionless compact object angular momentum j=cJ/GM^2. Moreover, quality of the fit tends to increase very gently with rising j. Good fits are reached when M ~ M_0[1+0.55(j+j^2)]. It is therefore impossible to estimate the mass without the independent knowledge of the angular momentum and vice versa. Considering j up to 0.3 the range of the feasible values of mass extends up to 3M_\sun. We suggest that similar increase of estimated mass due to rotational effects can be relevant for several other sources.Comment: 10 pages, 9 figures (in colour

    The return of the bursts: Thermonuclear flashes from Circinus X-1

    Get PDF
    We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 during its May 2010 X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by Tennant and collaborators, twenty-five years ago. By studying their spectral evolution, we firmly identify nine of the bursts as type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the bursts that confirms once and for all the identification of Cir X-1 as a type I X-ray burst source, and therefore as a low magnetic field accreting neutron star. The first five bursts observed by RXTE are weak and show approximately symmetric light curves, without detectable signs of cooling along the burst decay. We discuss their possible nature. Finally, we explore a scenario to explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it was extensively observed and accreting at a similar rate.Comment: Accepted for publication in The Astrophysical Journal Letters. Tables 1 & 2 merged. Minor changes after referee's comments. 5 pages, 4 Figure

    The star cluster formation history of the LMC

    Full text link
    The Large Magellanic Cloud is one of the nearest galaxies to us and is one of only few galaxies where the star formation history can be determined from studying resolved stellar populations. We have compiled a new catalogue of ages, luminosities and masses of LMC star clusters and used it to determine the age distribution and dissolution rate of LMC star clusters. We find that the frequency of massive clusters with masses M>5000 Msun is almost constant between 10 and 200 Myr, showing that the influence of residual gas expulsion is limited to the first 10 Myr of cluster evolution or clusters less massive than 5000 Msun. Comparing the cluster frequency in that interval with the absolute star formation rate, we find that about 15% of all stars in the LMC were formed in long-lived star clusters that survive for more than 10 Myr. We also find that the mass function of LMC clusters younger than 1 Gyr can be fitted by a power-law mass function with slope \alpha=-2.3, while older clusters follow a significantly shallower slope and interpret this is a sign of the ongoing dissolution of low-mass clusters. Our data shows that for ages older than 200 Myr, about 90% of all clusters are lost per dex of lifetime. The implied cluster dissolution rate is significantly faster than that based on analytic estimates and N-body simulations. Our cluster age data finally shows evidence for a burst in cluster formation about 1 Gyr ago, but little evidence for bursts at other ages.Comment: 18 pages, 6 figures, MNRAS in pres

    Phase Space Structure in the Solar Neighbourhood

    Get PDF
    We examine the idea that dynamical parameters can be estimated by identifying locations in the solar neighbourhood where simulated velocity distributions match the observed local distribution. Here, the dynamical influence of both the Galactic bar and the outer spiral pattern are taken into account. The Milky Way disc is stirred by analytical potentials that are chosen to represent the two perturbations, the ratio of pattern speeds of which is explored, rather than held constant. The velocity structure of the final configuration is presented as heliocentric velocity distributions at different locations. These model velocity distributions are compared to the observed distribution in terms of a goodness-of-fit parameter that has been formulated here. We monitor the spatial distribution of the maximal value of this parameter, in order to constrain the solar position from a model. Efficiency of a model is based on a study of this distribution as well as on other independent dynamical considerations. We reject the bar only and spiral only models and arrive at the following bar parameters from the bar+spiral simulations: bar pattern speed of 57.4^{+2.8}_{-3.3} km/s/kpc and a bar angle in [0^\circ,30∘, 30^\circ]. However, extracting information in this way is no longer viable when the dynamical influence of the spiral pattern does not succumb to that of the bar. Orbital analysis indicates that even though the basic bimodality in the local velocity distribution can be attributed to scattering off the Outer Lindblad Resonance of the bar, it is the interaction of irregular orbits and orbits of other resonant families, that is responsible for the other moving groups; it is realised that such interaction increases with the warmth of the background disk.Comment: 23 pages, 17 figures, accepted for publication in A&
    • …
    corecore