22 research outputs found

    Iceland spar calcite

    No full text
    Understanding the complex and dynamic nature of calcite surfaces under ambient conditions is important for optimizing industrial applications. It is essential to identify processes, their reversibility, and the relevant properties of CaCO3 solid-liquid and solid-gas interfaces under different environmental conditions, such as at increased relative humidity (RH). This work elucidates changes in surface properties on freshly cleaved calcite (topography, wettability and surface forces) as a function of time (≤28 h) at controlled humidity (≤3–95 %RH) and temperature (25.5 °C), evaluated with atomic force microscopy (AFM) and contact angle techniques. In the presence of humidity, the wettability decreased, liquid water capillary forces dominated over van der Waals forces, and surface domains, such as hillocks, height about 7.0 Å, and trenches, depth about −3.5 Å, appeared and grew primarily in lateral dimensions. Hillocks demonstrated lower adhesion and higher deformation in AFM experiments. We propose that the growing surface domains were formed by ion dissolution and diffusion followed by formation of hydrated salt of CaCO3. Upon drying, the height of the hillocks decreased by about 50% suggesting their alteration into dehydrated or less hydrated CaCO3. However, the process was not entirely reversible and crystallization of new domains continued at a reduced rate.Peer reviewe

    Surface-Modified and Unmodified Calcite: Effects of Water and Saturated Aqueous Octanoic Acid Droplets on Stability and Saturated Fatty Acid Layer Organization

    No full text
    Funding Information: This work was funded by the Omya International AG. A.S. is a researcher at Pro2BE at the Karlstad University, the research environment on Processes and Products for a Circular Biobased Economy. Publisher Copyright: © 2021 The Authors. Published by American Chemical Society.A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO3)2 molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.Peer reviewe

    Press hardening of zinc-coated boron steels:role of steel composition in the development of phase structures within coating and interface regions

    No full text
    Abstract Zn and ZnFe coated 22MnB5 and 34MnB5 steels were subjected to the direct press hardening process in order to investigate the influence of steel composition on the resulting phase structures. Microstructures were characterized using advanced methods of microscopy. In addition, X-ray diffraction, glow discharge optical emission spectroscopy and thermodynamic calculations with Thermo-Calc® were carried out to support the analysis. The results indicate that the steel composition has a clear effect on the phase development within coating and interface regions. Whereas the behavior of the 22MnB5 was comparable to earlier investigations, a clearly non-conventional behavior of the 34MnB5 was observed: the formation of martensitic micro constituents, designated here as α′-Fe(Zn), were identified after die-quenching. The regions of the α′-Fe(Zn) formed mainly in vicinity of steel/coating interface and were emerged into the steel by sharing martensitic morphology with the base steel. The thermodynamic calculations suggest that carbon is effective in stabilizing the γ-Fe(Zn) phase, which enables the formation of the α′-Fe(Zn) in fast cooling. Therefore, the higher initial C content of the 34MnB5 may result in the kinetic stabilization of the γ-Fe(Zn) as the inter-diffusion between Zn and Fe occurs during annealing. Simultaneously occurring carbon partitioning from α-Fe(Zn) to γ-Fe(Zn) could explain a clearly increased C content of the coating/steel interface as well as higher Zn contents in the α′-Fe(Zn) phase compared to 22MnB5. Actually, the present study shows that the same phenomenon occurs also in 22MnB5 steels, but in a much smaller scale. In Zn and ZnFe coated 34MnB5, the thickness of the α′-Fe(Zn) layer was increased with longer annealing times and at higher temperatures. The morphology of the α′-Fe(Zn) layer resembled plate-like martensite and can be assumed to be brittle. Regarding this, the formation of α′-Fe(Zn) interface layer needs to be taken into account in press hardening of 34MnB5 steels

    Effects of liquid surface tension on gas capillaries and capillary forces at superamphiphobic surfaces

    Get PDF
    Abstract The formation of a bridging gas capillary between superhydrophobic surfaces in water gives rise to strongly attractive interactions ranging up to several micrometers on separation. However, most liquids used in materials research are oil-based or contain surfactants. Superamphiphobic surfaces repel both water and low-surface-tension liquids. To control the interactions between a superamphiphobic surface and a particle, it needs to be resolved whether and how gas capillaries form in non-polar and low-surface-tension liquids. Such insight will aid advanced functional materials development. Here, we combine laser scanning confocal imaging and colloidal probe atomic force microscopy to elucidate the interaction between a superamphiphobic surface and a hydrophobic microparticle in three liquids with different surface tensions: water (73 mN m−1), ethylene glycol (48 mN m−1) and hexadecane (27 mN m−1). We show that bridging gas capillaries are formed in all three liquids. Force-distance curves between the superamphiphobic surface and the particle reveal strong attractive interactions, where the range and magnitude decrease with liquid surface tension. Comparison of free energy calculations based on the capillary menisci shapes and the force measurements suggest that under our dynamic measurements the gas pressure in the capillary is slightly below ambient

    Is ice nucleation from supercooled water insensitive to surface roughness?

    Get PDF
    There is much evidence that nucleation of liquid droplets from vapor as well as nucleation of crystals from both solution and vapor occurs preferentially in surface defects such as pits and grooves. In the case of nucleation of solid from liquid (freezing) the situation is much less clear-cut. We have therefore carried out a study of the freezing of 50 μm diameter water drops on silicon, glass, and mica substrates and made quantitative comparisons for smooth substrates and those roughened by scratching with three diamond powders of different size distributions. In all cases, freezing occurred close to the expected homogeneous freezing temperature, and the nucleation rates were within the range of literature data. Surface roughening had no experimentally significant effect on any of the substrates studied. In particular, surface roughening of mica - which has been shown to cause dramatic differences in crystal nucleation from organic vapors - has an insignificant eff ect on ice nucleation from supercooled water. The results also show that glass, silicon, and mica have at best only a marginal ice-nucleating capability which does not di ffer appreciably between the substrates. The lack of effect of roughness on freezing can be rationalized in terms of the relative magnitudes of interfacial free energies and the lack of a viable two-step mechanism, which allows vapor nucleation to proceed via a liquid intermediate
    corecore