442 research outputs found

    Singlet Magnetism in Heavy Fermions

    Full text link
    We consider singlet magnetism for the uranium ions in UPt3_3 and URu2_2Si2_2 assuming that time-reversal symmetry is broken for the {\em coherent state of intermediate valence}. The relative weight of the two involved configurations should be different for UPt3_3 and URu2_2Si2_2. If in UPt3_3 the configuration 5f15f^1 on the U-ion prevails in the coherent state below the magnetic transition, the magnetic moment would vanish for the particular choice of the {\em ionic} wave function. In case of URu2_2Si2_2, the phase transition is non-magnetic in the first approximation -- the magnetic moment arises from a small admixture of a half-integer spin configuration.Comment: 12 pages, RevTex, no figures; Phys. Rev. Lett., to appea

    Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence

    Get PDF
    [EN] This paper proposes an interpolation model for monthly rainfall in large areas of complex orography. It has been implemented in the Iberian Peninsula (continental territories of Spain and Portugal), Balearic and Canary Islands covering a territory of almost 600.000km(2). To do this a data set that comprises a total number of 11,822 monthly precipitation series has been created (11,042 provided by the Spanish Meteorological Agency and 780 provided by the National Water Resources Information System of the Portuguese Water Institute). The data set covers the period from October 1940 until September 2005. The interpolation model has been based on the assumption of two different components on monthly precipitation. The first component reflects local and seasonal characteristics and 24 different mean monthly precipitation maps (12) and SDs maps (12) compose it. It considers the varying influence of physiographic variables such as altitude and orientation. The second precipitation component reflects the synoptic pattern that dominated each month of the series and it is composed by series of anomalies of monthly precipitation (780). Anomalies have been interpolated by means of ordinary kriging once local spatial continuity was assumed. Gridded maps of each variable have been developed at 200m resolution following a hybrid methodology that implements two different interpolation techniques. The first technique applies a regression analysis to derive maps depending on altitude and orientation; the second one is a weighting technique to consider the non-linearity of the precipitation/altitude dependence. Cross validation has been applied to estimate the goodness of both techniques. Results show an average annual precipitation of 655mm/year. Although this figure is only 4% less than the estimate of MAGRAMA (2004), regional and local differences are highlighted when the spatial distribution is considered. The model constitutes a comprehensive implementation considering the availability of historical records and the need of avoiding slow calculations in large territories.Ministry of Economy, Industry and Competitiveness, Grant/Award Number: CGL2014-52571-RÁlvarez-Rodríguez, J.; Llasat, M.; Estrela Monreal, T. (2019). Development of a hybrid model to interpolate monthly precipitation maps incorporating the orographic influence. International Journal of Climatology. 39(10):3962-3975. https://doi.org/10.1002/joc.6051S396239753910AEMET.2011Atlas Climático Ibérico. (Iberian Climate Atlas) VV.AA. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente. ISBN: 978‐84‐7837‐079‐5. Available at:http://www.aemet.es/documentos/es/conocermas/publicaciones/Atlas-climatologico/Atlas.pdf[Accessed 14th February 2018]Álvarez‐Rodríguez J.2011.Estimación de la distribución espacial de la precipitación en zonas montañosas mediante métodos geoestadísticos (Analysis of spatial distribution of precipitation in mountainous areas by means of geostatistical analysis). PhD Thesis. Polytechnic University of Madrid Higher Technical School of Civil EngineeringÁlvarez-Rodríguez, J., Llasat, M. C., & Estrela, T. (2017). Analysis of geographic and orographic influence in Spanish monthly precipitation. International Journal of Climatology, 37, 350-362. doi:10.1002/joc.5007Barros, A. P., Kim, G., Williams, E., & Nesbitt, S. W. (2004). Probing orographic controls in the Himalayas during the monsoon using satellite imagery. Natural Hazards and Earth System Sciences, 4(1), 29-51. doi:10.5194/nhess-4-29-2004Barstad, I., Grabowski, W. W., & Smolarkiewicz, P. K. (2007). Characteristics of large-scale orographic precipitation: Evaluation of linear model in idealized problems. Journal of Hydrology, 340(1-2), 78-90. doi:10.1016/j.jhydrol.2007.04.005Creutin, J. D., & Obled, C. (1982). Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resources Research, 18(2), 413-431. doi:10.1029/wr018i002p00413Daly, C., Neilson, R. P., & Phillips, D. L. (1994). A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain. Journal of Applied Meteorology, 33(2), 140-158. doi:10.1175/1520-0450(1994)0332.0.co;2Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., … Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28(15), 2031-2064. doi:10.1002/joc.1688Daly, C., Slater, M. E., Roberti, J. A., Laseter, S. H., & Swift, L. W. (2017). High-resolution precipitation mapping in a mountainous watershed: ground truth for evaluating uncertainty in a national precipitation dataset. International Journal of Climatology, 37, 124-137. doi:10.1002/joc.4986Dhar, O. N., & Nandargi, S. (2004). Rainfall distribution over the Arunachal Pradesh Himalayas. Weather, 59(6), 155-157. doi:10.1256/wea.87.03Falivene, O., Cabrera, L., Tolosana-Delgado, R., & Sáez, A. (2010). Interpolation algorithm ranking using cross-validation and the role of smoothing effect. A coal zone example. Computers & Geosciences, 36(4), 512-519. doi:10.1016/j.cageo.2009.09.015Fiering, B., & Jackson, B. (1971). Synthetic Streamflows. Water Resources Monograph. doi:10.1029/wm001Gambolati, G., & Volpi, G. (1979). A conceptual deterministic analysis of the kriging technique in hydrology. Water Resources Research, 15(3), 625-629. doi:10.1029/wr015i003p00625Gómez-Hernández, J. J., Cassiraga, E. F., Guardiola-Albert, C., & Rodríguez, J. Á. (2001). Incorporating Information from a Digital Elevation Model for Improving the Areal Estimation of Rainfall. geoENV III — Geostatistics for Environmental Applications, 67-78. doi:10.1007/978-94-010-0810-5_6Goovaerts, P. (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228(1-2), 113-129. doi:10.1016/s0022-1694(00)00144-xHanson, C. L. (1982). DISTRIBUTION AND STOCHASTIC GENERATION OF ANNUAL AND MONTHLY PRECIPITATION ON A MOUNTAINOUS WATERSHED IN SOUTHWEST IDAHO. Journal of the American Water Resources Association, 18(5), 875-883. doi:10.1111/j.1752-1688.1982.tb00085.xLloyd, C. D. (2005). Assessing the effect of integrating elevation data into the estimation of monthly precipitation in Great Britain. Journal of Hydrology, 308(1-4), 128-150. doi:10.1016/j.jhydrol.2004.10.026Marquı́nez, J., Lastra, J., & Garcı́a, P. (2003). Estimation models for precipitation in mountainous regions: the use of GIS and multivariate analysis. Journal of Hydrology, 270(1-2), 1-11. doi:10.1016/s0022-1694(02)00110-5Martínez-Cob, A. (1996). Multivariate geostatistical analysis of evapotranspiration and precipitation in mountainous terrain. Journal of Hydrology, 174(1-2), 19-35. doi:10.1016/0022-1694(95)02755-6Mitáš, L., & Mitášová, H. (1988). General variational approach to the interpolation problem. Computers & Mathematics with Applications, 16(12), 983-992. doi:10.1016/0898-1221(88)90255-6Naoum, S., & Tsanis, I. K. (2004). Orographic Precipitation Modeling with Multiple Linear Regression. Journal of Hydrologic Engineering, 9(2), 79-102. doi:10.1061/(asce)1084-0699(2004)9:2(79)Ninyerola, M., Pons, X., & Roure, J. M. (2006). Monthly precipitation mapping of the Iberian Peninsula using spatial interpolation tools implemented in a Geographic Information System. Theoretical and Applied Climatology, 89(3-4), 195-209. doi:10.1007/s00704-006-0264-2Pebesma, E. J. (2004). Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30(7), 683-691. doi:10.1016/j.cageo.2004.03.012Rotunno, R., & Ferretti, R. (2001). Mechanisms of Intense Alpine Rainfall. Journal of the Atmospheric Sciences, 58(13), 1732-1749. doi:10.1175/1520-0469(2001)0582.0.co;2Singh, P., Ramasastri, K. S., & Kumar, N. (1995). Topographical Influence on Precipitation Distribution in Different Ranges of Western Himalayas. Hydrology Research, 26(4-5), 259-284. doi:10.2166/nh.1995.0015Tabios, G. Q., & Salas, J. D. (1985). A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION. Journal of the American Water Resources Association, 21(3), 365-380. doi:10.1111/j.1752-1688.1985.tb00147.xTHIESSEN, A. H. (1911). PRECIPITATION AVERAGES FOR LARGE AREAS. Monthly Weather Review, 39(7), 1082-1089. doi:10.1175/1520-0493(1911)392.0.co;2Tobin, C., Nicotina, L., Parlange, M. B., Berne, A., & Rinaldo, A. (2011). Improved interpolation of meteorological forcings for hydrologic applications in a Swiss Alpine region. Journal of Hydrology, 401(1-2), 77-89. doi:10.1016/j.jhydrol.2011.02.010Weber, D., & Englund, E. (1992). Evaluation and comparison of spatial interpolators. Mathematical Geology, 24(4), 381-391. doi:10.1007/bf00891270Weber, D. D., & Englund, E. J. (1994). Evaluation and comparison of spatial interpolators II. Mathematical Geology, 26(5), 589-603. doi:10.1007/bf02089243World Climate Programme.1985. World Meteorological Organization. Review of Requirements for Area‐Averaged Precipitation Data Surface‐Based and Space‐Based Estimation Techniques Space and Time Sampling Accurancy and Error; Data Exchange. Boulder Colorado EE.UU. 17–1

    A new generic open pit mine planning process with risk assessment ability

    Get PDF
    Conventionally, mining industry relies on a deterministic view, where a unique mine plan is determined based on a single resource model. A major shortfall of this approach is the inability to assess the risk caused by the well-known geological uncertainty, i.e. the in situ grade and tonnage variability of the mineral deposit. Despite some recent attempts in developing stochastic mine planning models which have demonstrated promising results, the industry still remains sceptical about this innovative idea. With respect to unbiased linear estimation, kriging is the most popular and reliable deterministic interpolation technique for resource estimation and it appears to remain its popularity in the near future. This paper presents a new systematic framework to quantify the risk of kriging-based mining projects due to the geological uncertainties. Firstly, conditional simulation is implemented to generate a series of equally-probable orebody realisations and these realisations are then compared with the kriged resource model to analyse its geological uncertainty. Secondly, a production schedule over the life of mine is determined based on the kriged resource model. Finally, risk profiles of that production schedule, namely ore and waste tonnage production, blending grade and Net Present Value (NPV), are constructed using the orebody realisations. The proposed model was applied on a multi-element deposit and the result demonstrates that that the kriging-based mine plan is unlikely to meet the production targets. Especially, the kriging-based mine plan overestimated the expected NPV at a magnitude of 6.70% to 7.34% (135 Mto151 M to 151 M). A new multivariate conditional simulation framework was also introduced in this paper to cope with the multivariate nature of the deposit. Although an iron ore deposit is used to prove the concepts, the method can easily be adapted to other kinds of mineral deposits, including surface coal mine

    Incorporating the geometry of dispersal and migration to understand spatial patterns of species distributions

    Get PDF
    Dispersal and migration can be important drivers of species distributions. Because the paths followed by individuals of many species are curvilinear, spatial statistical models based on rectilinear coordinates systems would fail to predict population connectivity or the ecological consequences of migration or species invasions. I propose that we view migration/dispersal as if organisms were moving along curvilinear geometrical objects called smooth manifolds. In that view, the curvilinear pathways become the ‘shortest realised paths’ arising from the necessity to minimise mortality risks and energy costs. One can then define curvilinear coordinate systems on such manifolds. I describe a procedure to incorporate manifolds and define appropriate coordinate systems, with focus on trajectories (1D manifolds), as parts of mechanistic ecological models. I show how a statistical method, known as ‘manifold learning’, enables one to define the manifold and the appropriate coordinate systems needed to calculate population connectivity or study the effects of migrations (e.g. in aquatic invertebrates, fish, insects and birds). This approach may help in the design of networks of protected areas, in studying the consequences of invasion, range expansions, or transfer of parasites/diseases. Overall, a geometrical view to animal movement gives a novel perspective to the understanding of the ecological role of dispersal and migration

    Utilizing image texture to detect land-cover change in Mediterranean coastal wetlands

    Get PDF
    Land-use/cover change dynamics were investigated in a Mediterranean coastal wetland. Change Vector Analysis (CVA) without and with image texture derived from the co-occurrence matrix and variogram were evaluated for detecting land-use/cover change. Three Landsat Thematic Mapper (TM) scenes recorded on July 1985, 1993 and 2005 were used, minimizing change detection error caused by seasonal differences. Images were geometrically, atmospherically and radiometrically corrected. CVA without and with texture measures were implemented and assessed using reference images generated by object-based supervised classification. These outputs were used for cross-classification to determine the ‘from–to’ change used to compare between techniques. The Landsat TM image bands together with the variogram yielded the most accurate change detection results, with Kappa statistics of 0.7619 and 0.7637 for the 1985–1993 and 1993–2005 image pairs, respectively

    Magnetic resonance in porous media: Recent progress

    Get PDF
    Recent years have seen significant progress in the NMR study of porous media from natural and industrial sources and of cultural significance such as paintings. This paper provides a brief outline of the recent technical development of NMR in this area. These advances are relevant for broad NMR applications in material characterization.open283

    Study of weighted fusion methods for the measurement of surface geometry

    Get PDF
    Four types of weighted fusion methods, including pixel-level, least-squares, parametrical and non-parametrical, have been classified and theoretically analysed in this study. In particular, the uncertainty propagation of the weighted least-squares fusion was analysed and its relation to the Kalman filter was studied. In cooperation with different fitting models, these four weighted fusion methods can be applied to a range of measurement challenges. The experimental results of this study show that the four weighted fusion methods compose a computationally efficient and reliable system for multi-sensor measurement problems, especially for freeform surface measurement. A comparison of weighted fusion with residual approximation-based fusion has also been conducted by providing the input datasets with different noise levels and sample sizes. The results demonstrated that weighted fusion and residual approximation-based fusion are complementary approaches applicable to most fusion scenarios
    corecore