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Abstract 

Dispersal and migration can be important drivers of species distributions. Because the 

paths followed by individuals of many species are curvilinear, spatial statistical models 

based on rectilinear coordinates systems would fail to predict population connectivity or 

the ecological consequences of migration or species invasions.  I propose that we view 

migration/dispersal as if organisms were moving along curvilinear geometrical objects 

called smooth manifolds. In that view, the curvilinear pathways become the “shortest 

realised paths” arising from the necessity to minimise mortality risks and energy costs. 

One can then define curvilinear coordinate systems on such manifolds. I describe a 

procedure to incorporate manifolds and define appropriate coordinate systems, with 

focus on trajectories (1D manifolds), as parts of mechanistic ecological models. I show 

how a statistical method, known as “manifold learning”, enables one to define the 

manifold and the appropriate coordinate systems needed to calculate population 

connectivity or study the effects of migrations (e.g. in aquatic invertebrates, fish, insects 

and birds). This approach may help in the design of networks of protected areas, in 

studying the consequences of invasion, range expansions, or transfer of 

parasites/diseases. Overall, a geometrical view to animal movement gives a novel 

perspective to the understanding of the ecological role of dispersal and migration.  
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Introduction 

Space plays a central role in ecological processes, driving patterns of population 

abundance, community structure and ecosystem function. There is now a significant 

body of work showing that ecological processes operate on populations and 

communities at various spatial scales, leading to scale-dependent patterns of structure 

(e.g. patchy distribution of organisms) from the scale of metres to those encompassing 

meta-populations and communities (Wiens 1989, Levin 1992, Wiens and Bachelet 

2010). In populations occupying fragmented landscapes (e.g. animals living in forest 

patches separated by cultivated grassland; marine benthic invertebrates living in rock 

shores separated by sandy beaches), large scale ecological patterns can be driven by 

migration/dispersal among patches in addition to mortality and reproduction.  There is 

also a significant amount of work highlighting the importance of distance-dependency 

in the intensity of interactions. Movement, migration and dispersal across space are 

usually distance-dependent, meaning that nearby patches exchange individuals more 

easily (i.e. they are better connected) than those located far away. In addition, 

neighbours usually interact with target individuals more frequently than those located 

outside the neighbourhood. Distance-dependency in the intensity of interactions can 

promote coexistence between predators and prey (Tilman and Kareiva 1997, 

Dieckmann et al. 2000), and the formation of regular patterns of distribution in many 

types of ecosystems (Rietkert and Van de Koppel 2008). In addition, patterns arise as 

the consequence of dispersal limitations imposed by habitat fragmentation and 

landscape features (Hanksi 1999, Holyoak et al. 2005, Massol et al. 2011). 

Landscape and seascape structures promote spatial patterns in population and 

communities because they provide environmental heterogeneity and also because they 

determine patterns of  migration or dispersal across the landscape (Stamps et al. 1987, 

McIntyre and Wiens 1999, Massol et al. 2011). Organisms may connect patches by 

dispersing in all directions across the landscape (e.g. across cultivated land) or may 

follow specific migratory routes. An important point is that the pathways of 

migration/dispersal do not always take the shape of straight lines across the habitat 

matrix (i.e. understood here as the habitat that animals cross) or follow trajectories 

solely defined by the earth curvature (Greenberg et al. 2011). In some cases, such 

movements occur through a network of “minimum cost corridors” or “least cost paths” 

(e.g. Adriaensen et al. 2003, Estrada-Peña 2003, Greenberg et al. 2011). In others, 

movement has been abstracted as a walk on a fractal space (Crist et al. 1992, Scheiner 
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1994 chap 5, Edwards, et al. 2007). In addition, there is now a growing body of theory 

suggesting that, at large scales, marine organisms disperse or are transported by currents 

along curves and meanders as a consequence of the curl of eddies or curvilinear 

coastlines (White et al. 2010, Butler et al. 2011, Robins et al. 2013). Curvilinear 

trajectories also occur in insects migrating on wind fields (Chapman et al. 2010), by 

migrating birds (Mandel et al. 2011, Trerweiler et al, 2014) and most likely by 

organisms dispersing along rivers (Boedeltje et al. 2003, Nathan 2008). The curvilinear 

nature of the migration pathways are usually the consequence of behavioural responses 

of migrants to e.g. landscape topography, predators or food. 

The problem imposed by curvilinear trajectories is that they will, in principle call into 

question the use of Euclidean distances (or distances based on geographic coordinates) 

as the metric to quantify connectivity or distance-dependent interactions (Greenberg et 

al. 2011). For instance, for those cases, connectivity between local populations is not 

well described by straight lines. Indeed, in the marine environment, straight lines (or 

arcs) defined as Euclidean distances (or geographical distances based on latitude and 

longitude) do not explain patterns of connectivity (Moritz et al. 2013, D’Aloia et al. 

2015) or genetic population structure (Alberto et al. 2011) because the actual 

“oceanographic distances” between populations respond to highly curved trajectories 

(White et al. 2010). This is an important issue in the context of conservation, at the time 

of defining spatial distances between protected areas (Botsford et al. 2001, D’Aloia et 

al. 2015). 

 The idea proposed here is to use concepts of differential geometry of smooth surfaces 

in order to obtain appropriate metrics of (curvilinear) distances that are ecologically 

meaningful for understanding patterns of species distribution. I focus on curvilinear 

trajectories of organisms, but the same concepts can be applied to transport of materials 

and its role in energy flow and ecosystem processes. In the first section, I organise these 

ideas in a framework, based on concepts of differential geometry that enable the 

definition of curvilinear distances. Then, I use a simple example to introduce these 

concepts as a way to show how alternative metrics of distance (curvilinear or Euclidean) 

can be defined and tested. In the third section, I generalise the procedure of testing 

whether different metrics of distance are appropriate descriptors of distance-dependent 

ecological processes. This procedure involves the tests of alternative definitions of 

distance, through standard spatial statistical methods (Isaaks and Srivastava 1989, Plant 

2012); by extension, alternative hypothetical dispersal/migration mechanisms are tested. 
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In the fourth second section, I discuss statistical methods available to estimate 

curvilinear distances in real life situations. To the best of my knowledge, an approach 

such as the one proposed here has not been done before (Supplementary material 

appendix: Section 1). The exception are cases where distances are calculated on the 

earth surface, considered as a 2D curved space (using e.g. a spherical coordinate 

system), but here I consider highly curved trajectories.  

2. Conceptual framework 

The fundamental concepts to be discussed here are “distance”, “length” and “space”; the 

discussion is based on mathematical elaborations within the field of differential 

geometry (Grinfeld 2010, Peters 2010, Pressley 2012). Importantly, the calculation of 

distances among objects (e.g. habitat patches) in a given space (e.g. the flat, Euclidean 

space) is usually done with reference to a coordinate system (e.g. a Cartesian). In the 

Euclidean space (and in any other curvilinear space), we can define any coordinate 

system to describe the position of any two habitat patches (details in Supplementary 

material appendix Section 2: Fig. A1). The coordinates of the patches will vary with the 

coordinate system, but the distance between them will remain constant irrespective of 

the coordinate system considered; distances are said to be invariant to a coordinate 

system transformation. However, distances differ if we view the habitat patches as 

placed in different types of spaces (Supplementary material appendix Section 2: Fig. 

A1). Hence, the definition of distances is tied to the characteristics of the space where 

the habitat patches are placed.  

The use of Euclidean distances in ecology implies the assumption of animals moving 

freely in the flat physical space; by using geographic coordinates (latitude, longitude) 

the implication is that organism move in a space defined by the curvature of the earth 

surface. However, here I am referring to cases where animal movement follows 

curvilinear trajectories defined by their interaction with the landscape. In such 

situations, migration may be viewed as if organisms were moving on or along 

curvilinear geometrical objects, defined in geometry as smooth manifolds (Fig.1). 

Smooth manifolds are smooth surfaces that locally resemble the Euclidean (=flat) space 

but are curved at large scales. Hence, at a small scales, one can map points on a 

manifold using a coordinate system defined of the Euclidean space. In addition, for 

these manifolds, one can produce one-to-one mapping of each point of the manifold into 

a chart. The sphere and different types paraboloids (Fig 2) are examples of 2-

dimentional (2D)-smooth manifolds. The earth can be represented as near spherical 
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manifold; for this case, the Mercator projection maps each point of the manifold (the 

earth surface) into a plane. Smooth curves without self-crossings are examples of 1D 

manifolds of the type discussed here. Smooth manifolds generalise the concept of 

spaces, from Euclidean to curved spaces; i.e. a plane or the 3D Euclidean space are also 

manifolds.  

The fact that manifolds can be considered locally flat but regionally curved is consistent 

the concept of scale-dependence in ecology applied to dispersal and migration. At short 

distances, the paths of dispersal may be well approximated straight lines (for the cases 

discussed here), which implies the assumption that organisms move in a Euclidean 

space. However, at large scales, interactions between landscape features and organism 

lead to curvatures that play a significant role in defining distances among habitat 

patches. For example, at the scale of a few hundreds of meters, the path of a flying bird 

or a marine organism drifting along a current may look straight. However at scales of 

hundreds of kilometres such paths are likely to be curved: birds usually avoid (and fly 

around) habitats where risks of mortality are high; marine animals drift around eddies or 

other types of loops produced by the rotation of water masses.  

Another important concept is related to the interpretation of migration/dispersal 

pathways. The paths followed by organisms may be viewed as the “shortest realised 

paths” in spite of the fact that they are actually curved.  This interpretation is valid 

(ecologically) because such paths, shaped by behaviour and the landscape, are likely to 

minimize energy costs or risks of mortality. For example, an organism drifting in the 

sea follows curvilinear pathways because alternative routes (swimming against currents) 

are energetically demanding or physical impossible. Birds, may avoid crossing large 

water masses or flying above habitats with little food availability due to high risk of 

mortality. Importantly, on smooth manifolds, the shortest distance between two points 

are segments of special curves called the geodesics. The concept of geodesics 

generalises the concept of straight lines for curvilinear spaces (Fig. 2) i.e. in a Euclidean 

space, the geodesics are straight lines; in a curvilinear manifold the geodesics are 

curves.  

Taking into account the concept of manifold and geodesics we can view migration as if 

individuals were moving on the surface of a curvilinear manifold, arising as the 

consequence of the interactions of individuals with the landscape. In addition, we can 

view the pathways of migration as the “shortest realised paths” within the manifold and 

therefore as sections of the manifold geodesics. For example, if we abstract the earth as 
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a sphere, in the absence of wind patterns, rotation effects or unsuitable habitats, the 

shortest path followed by a migrating bird would be the one defined by a great circle, 

i.e. a circle centred at the centre of the earth. This is because the great circles are the 

geodesics of the sphere. However, once we accept that animal migration occurs along 

manifolds arising from the presence of e.g. wind patterns and unsuitable habitat, then 

the resulting curved trajectories become the geodesics of that manifold.   

On the manifolds, distances between habitat patches (or organisms) may be calculated 

on the geodesics, with reference to a curvilinear coordinate system (Fig. 1).  Here, I call 

such distances as “ecologically based geodesic distances” (EGDs), because they 

constitute the geodesic of a manifold arising from ecological processes (interactions 

between organisms and the surrounding habitat). Given this definition, the Euclidean or 

geographic distances between two patches (or organisms) become particular cases of 

EGDs whereby animal movement between patches is not constrained by e.g. current 

patterns or unsuitable habitat.  Because the Euclidean and geographic distances are 

cases of EGDs, this framework enables the construction of alternative hypotheses (each 

represented by a different EGD) about how ecological processes occur in space. Thus, 

each metric of distance becomes a testable hypothesis. The issue of hypothesis testing is 

further elaborated in the following two sections. 

  

3. Applying geometrical concepts to a simple example 

Consider the following thought experiment: imagine a regional coastline (Fig. 3a) 

harbouring evenly spaced populations of organisms connected by individuals migrating 

along the habitat matrix. The organism in question, terrestrial or marine (e.g. the latter 

dispersing during the larval phase), is invading the bay from the NE, spreading to the S 

and W. As time passes, colonising stages invade habitat patches so that populations near 

the source are larger than those located far away. In the bay, two hypothetical 

mechanisms of dispersal are possible, either dispersal through natural means or human-

mediated dispersal. The dispersal through natural mechanism is constrained to occur 

along the coast: for the case of the terrestrial organism, this would be realistic if 

individuals are not capable of swimming or flying, at least for such long distances 

characterising the bay. For marine organisms, hydrodynamic conditions may constraint 

larval transport to occur only along the coastline; for instance, coastal fronts located at 

shelf breaks may restrict cross-shelf dispersal or larval behaviour may promote retention 

near the coast (e.g. Marta-Almeida 2006), but enable along shore transport. The human-
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mediated dispersal occurs through maritime transport: for instance, terrestrial animals 

may hitchhike on ships; marine invertebrate larvae may be trapped in ballast water 

contained in ships hulls and discharged upon arrival to a new coastal site (Seebens et al. 

2013) or organisms may colonise boat hulls (Carlton and Hodder 1995). Assume that 

maritime transport occurs in straight lines as ships move all across the bay, but transport 

is more frequent along shorter than longer distances. Hence, in this scenario, the 

alternative hypothetical dispersal mechanisms differ in the characteristics of the 

manifolds. For the natural dispersal mechanism, the manifold is a one-dimensional (1D) 

geometrical object whose shape is given by the coastline; from the standpoint of 

dispersing organism, the shortest realised path between two inhabitable habitat patches, 

the geodesics, consist of a curve that will determine the EGD between habitat patches. 

For the maritime transport mechanism, the manifold is a 2D flat space (for simplicity, 

earth curvature is ignored) and the geodesics are straight lines, and the EGDs are made 

of Euclidean distances among habitat patches.  

Importantly, the alternative EGDs, derived from migration along each manifold, predict 

a different pattern of distribution. Hence, the incorporation EGDs into statistical 

procedures would enable determination of which mechanism is more consistent with 

spatial patterns. If the coastline were a straight line, one would expect a monotonic 

decrease in abundance along the geographical coordinates, as individuals disperse; such 

a pattern would be evaluated, for instance, using a simple regression model estimating 

abundance as a function of the linear distance defined by the geographical coordinates; 

i.e. that axis constitutes a convenient coordinate system. Following this argument, I 

choose a convenient coordinate system defined on the manifolds in order to quantify the 

spatial changes in the pattern of abundance of the target species, i.e. a Cartesian system 

for the maritime transport mechanism and a curvilinear system for the natural dispersal 

mechanism. The choice of the coordinate systems enables the use of standard statistical 

methods of hypothesis testing or model selection to determine which mechanism is 

more consistent with the patterns.  

I now illustrate the steps described above, simulating a process of model selection in 

two different sets of scenarios where either the natural dispersal or the maritime 

mechanisms are the true mechanisms explaining the patterns of distribution of the 

invading space.  In the scenarios where the true mechanism is the natural dispersal 

(EGD is curvlinear), the following key question are addressed: given a curvilinear 

pattern of dispersal, what is the performance of a model fitted using linear combinations 
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of the Cartesian coordinates? Is there any advantage in using this “manifold approach” 

as compared with sticking to a flat space and a Cartesian (or other rectilinear) 

coordinate system? Notice that this is not a circular argument: we know that the true 

model is the one based on curvilinear migration but we want to determine how well a 

model based on Euclidean distances will perform. This will tell us if an observer, not 

knowing the true model, will be able to use the “manifold approach” to infer the 

mechanism of migration.  

I consider three different coastlines (Fig. 3b) as a way to evaluate the importance of the 

degree of landscape curvature in how good predictions are made based on geographical 

coordinates as compared to the curvilinear coordinate system. As in a real life scenario, 

the data consist of the abundance of target organism at each habitat patch, the position 

of each patch with respect to the Cartesian coordinates and the position in relation to the 

curvilinear coordinate system. The details of methods used to produce the data are given 

in the Supplementary material appendix: Section 3.1: Briefly, the coastline is defined as 

a parabola, embedded in a Euclidean space with a Cartesian coordinate system, C(x,y). 

The equation of the parabola has a parameter σ > 0 that controls the coastline curvature, 

such that open coasts have large σ-values (Fig.3b). Along the coastline, habitat patches 

were defined and located according to the Cartesian coordinates. The curvilinear 

coordinate system, S(z), was defined on the parabola as the distance along the coast. 

The abundance of the dispersing species, Ni at a patch i was modelled as an exponential 

decaying function of the spatial coordinates of each habitat patch plus normally 

distributed errors; the exponential decay is governed by the parameter β. For each 

combination of values of σ (=0.5, 1 and 2) and β (=0.1, 0.2, 0.3), I simulated 1000 

patterns of abundance distributions (Fig 3c,d, summarised in fig. 4 and Supplementary 

material Appendix Section 3.2 figs A2-A3) and carried out the corresponding 1000 

statistical tests (see below). The differences in the patterns of distribution (averaging the 

1000 simulations) arising from the different mechanisms are clearly seen by comparing 

figures 3c and 3d. While the natural transport mechanism (Fig 3c) predicts the lowest 

abundance at the NW extreme of the bay, the maritime transport (Fig 3d) results in a 

rise in abundance at that extreme. The rise of abundance occurs because the linear 

distances between the NW and NE extremes, are smaller than linear distances between 

NE and S of the bay (see also Fig 3a). 

Model fitting was made with general least square models and comparisons were made 

with ΔAIC (Supplementary material appendix: Section 3.1), focusing on the comparison 
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between the true model and three alternative models based on Cartesian coordinates 

(Table 1). The hypothetical mechanisms (Table 1), associated manifolds and coordinate 

systems are defined as follows: (1) alongshore dispersal, the predictor is the arc length 

of the parabola describing the shoreline. (2) Dispersal occurring along the x-dimension 

(the only predictor is x). (3) Dispersal across the bay, over a 2D flat space (4) Dispersal 

depending on the Euclidean distance; this model implies a 2D flat space where the 

predictor is the Euclidean distance.  

The overall results (Table 2) show that models based on Cartesian coordinate systems 

perform as good as the true model only in the case of very open coasts (σ = 2): in that 

case ΔAIC are approaching zero. However, even on slightly curved coastlines (σ = 1), 

these models do not fare as well as the one based on the curvilinear coordinate system. 

Plots of the average, standard error and confidence intervals of the distribution based on 

all the 1000 calculated ΔAIC (e.g. Fig. 4) also highlight the low performance of models 

based on Cartesian coordinate systems unless the coastline is wide open. Hence, even 

for slightly curved migration pathways it is unlikely that an observer would fit a model 

based on linear combination of Cartesian coordinates with as good performance as that 

fitted on the curvilinear coordinates.  

The poor performance of models based on Cartesian coordinates occurs because such 

models do not predict a decrease in abundance along the bay (as in Fig 3c). For 

instance, the model based on Euclidean distances would predict a rise in abundance 

towards the NW extreme (as shown in Fig. 3d) and the one based on x-coordinates 

underestimates the decrease towards the NE (Supplementary material Appendix: 

Section 3: Table A1). It is likely that fitting a complex quadratic or cubic polynomial or 

a spline function would give an acceptable model fit. However, it would be difficult to 

interpret the parameters of such complex (and less parsimonious) models, in ecological 

terms. By contrast, by defining alternative manifolds, as representations of the 

alternative mechanisms (e.g. maritime transport vs natural dispersal), one gives a 

mechanistic explanation to the patterns and hence gives ecological meaning to the  

decay coefficient. The mechanistic explanation exists because the shape of the manifold 

is associated with, for example, specific behaviours and landscape features. Hence, the 

decay coefficient quantifies the decrease is abundance per unit of length with respect to 

a specific manifold (representing a specific dispersal mechanism). 

The set of scenarios where connectivity is driven by the maritime transport mechanisms 

enables the test of curvilinear distance. This is based on the same type of simulation 
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explained above (see Supplementary material Appendix: Section 3.2 Table A2), but 

now with spatial patterns as driven by Euclidean distances. The results show that the 

natural mechanism (=curvilinear distance) is rejected as a mechanism explaining the 

spatial patterns of abundance (see Supplementary material Appendix: Section 3.2, fig. 

A4 for spatial patterns of abundance). Again, and in consistence with logic, only when 

the bay is characterised by a low curvature would both models show similar explanatory 

power. Therefore, curvilinear distances are a testable model as much as Euclidean 

distances. 

 

4. Hypothesis testing/model selection 

Based on the idealised case of the previous section, one can derive a general procedure 

that enables to test whether flat or curvilinear spaces, and hence Euclidean or arc-

distances, correctly represent EGDs among organisms or habitat patches. In doing so, 

we test for alternative mechanisms explaining such patterns because the distances are 

defined from the EGDs, which in turn reflect the mechanisms driving dispersal.  

The general procedure consists of three steps: (1) The formulation of hypotheses about 

mechanisms shaping the pathways of dispersal or migration. In this step, a unique 

manifold must be assigned to each specific mechanism: this makes the manifold 

geodesics (and hence the distances) unique to each specific hypothesis and therefore 

testable. (2) The choice of a convenient coordinate system on each manifold. This step 

enables the use of spatial statistical methods for hypothesis testing or model selection. 

For a 1D curvilinear alternative (Fig 3), the coordinate system will be placed along the 

pathway of dispersal/migration, but for a 2D space more than one coordinate systems 

may be defined. (3) The application of standard statistical methods (e.g. regression, 

generalised linear modelling) incorporating the spatial position of the habitats according 

to the chosen coordinate systems. The mode of testing will vary, according to the 

question. In the example of the previous section, the coordinates were incorporated in 

the model as predictors, but they may be instead included in the error term in order to 

consider potential spatial autocorrelation effects.  Overall, this general procedure 

enables the test of different EGDs and by extension alternative hypothetical 

mechanisms driving patterns of distribution.  

 

5. Constructing alternative hypotheses in with real world scenarios 
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The previous section summarised the sequence of steps needed to use manifolds starting 

with the formulation of hypotheses and ending in the application of linear statistical 

methods. Euclidean distances, as one of the alternative hypothetical EGD, is defined 

from Cartesian coordinate systems applied on a landscape. The difficult point, which is 

addressed in this section, is to “find” (= “approximate” in the statistical language) the 

curvilinear manifolds and the coordinate systems that are going to provide the 

alternative hypothetical definitions of EGDs. 

The type of data used to approach the manifolds will obviously depend on the specific 

case.  For example, manifolds may be approximated from the spatial distribution of 

habitat patches (e.g. fragmented forests in a cultivated landscape, islands in the sea), 

topographic structures in the landscape (e.g.  rivers, mountains), hydrographic structures 

in the seascape (e.g. eddies or frontal zones), or position of organisms as they migrate. 

The geometry of the spatial patterns of habitats of organisms may lead to the 

approximation 1D manifold, a curve, when e.g. habitats/organisms are mapped on a 

plane or a 2D curved surface if they are mapped in three dimensions.  

In order to understand what is required to approximate a manifold and a coordinate 

system, it is convenient to recall that Euclidean spaces constitute flat manifolds where 

orthogonal coordinate systems may be obtained through principal component analysis 

(PCA). In ecology, PCA is used as a method of dimension reduction (Legendre and 

Legendre 1998) but the components constitute a rotated and orthogonal coordinate 

system. This line of thinking shows that we require an extension of PCA, enabling one 

to approximate the shape of a curvilinear manifold and define a coordinate system. As 

recognised by Pearson (1901), linear regression methods are not appropriate to derive a 

coordinate system. Therefore, GAMs or non-linear regression techniques, expressing 

e.g. the y-coordinate as a function of the x-coordinate, y=f(x), would not be appropriate 

either.  

The extension of PCA to curvilinear spaces is called “manifold learning”, a type of 

unsupervised machine learning technique (Gorban et al. 2008, Einbeck et al; 2010); it 

includes two types of method, the nonlinear PCA (e.g. Scholz et al. 2008) and principal 

manifold techniques (e.g. Gorban and Zinovyev 2008). Some have been used to 

represent objects in space ranging from molecules (Gorban and Zinovyev 2008) to 

anatomical structures (Failmezger et al. 2013). Manifold learning techniques have also 

been used as an ordination method to study patterns of gene expression (Gorban and 

Zinovyev 2010) and in climate science (Hsieh et al. 2006). In what follows, I apply one 
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of these techniques, non-linear PCA (NLPCA: Scholz et al. 2010) to seven ecological 

cases (details of methods  in Supplementary material Appendix Section 4).  

The first two examples (Butler et al. 2011; Ayata et al. 2010) are based on paths of 

dispersal of marine invertebrate larvae obtained from numerical models. Although not 

based on real data, these examples are useful to introduce the approach based on 

manifolds, and visualise the performance of NLPCA when migration pathways are 

highly curvilinear. Butler et al. (2011) modelled the dispersal of spiny lobster larvae 

(Panulirus argus) in Yucatan bay (Caribbean Sea) with respect to spawning sites; 

dispersing individuals form a dispersal plume; I use one such map to construct a 

manifold (Fig. 5a). I simulated the dispersal plume that would capture the convoluted 

shape of the dispersal pathways found by Butler et al. (2011) and the pattern of 

connectivity between 10 of the sites of larval release, located along the shore. The 

curvilinear coordinate system is defined on the manifold approximated through 

NLPCA. In addition, I derived a second coordinate axis, z2, based on Euclidean 

distances between the projection of each point in the manifold (triangles in Fig 5a) and 

the position in the Euclidean space (details in Supplementary material Appendix Section 

5). The graphical representation of the new coordinate system, S(z1,z2), shows that 

geographical distances between sites do not always correspond to those produced by the 

manifold, but instead would represent an average oceanographic distance between sites. 

If model predictions of Butler et al. (2011) are correct, from the perspective of a 

dispersing larva, the shortest distance between spawning populations of spiny lobsters 

would be better defined as those given by the curvilinear manifold (Fig. 5b). At this 

stage, one would use the two coordinate system, S(z1,z2) and C(x,y), to construct 

separate statistical models and test which metric of distance (curvilinear or Euclidean) 

and, by extension, which mechanism of dispersal (free random dispersal vs larval 

transport) is more likely to explain metapopulation connectivity.  

There may be situations enabling the test of several models of curvilinear dispersal 

along with the model of dispersal based on Euclidean distance. For instance, Ayata et al. 

(2010) found that different larval behaviours lead to dispersal plumes of different 

shapes.  The manifolds (Figs 5c-e) correspond to the southernmost kernel modelled in 

the study area (Bay of Biscay). The one corresponding to passive transport (Fig. 5c) 

shows the influence of hydrodynamic structures on the shape of the dispersal plumes 

and differs from those corresponding to the models including animal migration 

(ontogenic and diel larval vertical migration). In this case, one would apply model 
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selection (or hypothesis testing) to four models, three of them based on the coordinate 

systems defined each manifold, plus a model based on a Cartesian coordinate system. 

In the following five examples (Fig. 6), I use actual data and focus on approximating 

manifolds needed to derive the curvilinear coordinate system (the Z2 coordinate derived 

in Fig 5b is not longer considered). Trierweiller et al. (2014) studied patterns of 

migration of Montagu’s harriers (Circus pygargus) between Europe and Sub Saharan 

Africa. I reconstructed the position of those birds from the West Europe breeding sites, 

migrating in Autumn to the westernmost sites of Africa through the western migration 

route. The reconstructed positions and the manifold show a slight curvature (Fig. 6a). 

Trieweiller et al. (2014) discussed the characteristics of this route that explain the 

curvature, i.e. a short crossing distance across Mediterranean Sea (the Gibraltar Strait), 

and increased amount of potential foraging habitat (as compared with other migration 

flyways). Another important organism performing migrations in N Africa is the desert 

locust, Schistocerca gregaria, (Draper 1980). Swarms located in the West Sub Saharan 

Africa summer breeding area cross to Asia and return, while swarms in west Africa 

appear to migrate within the continent through various routes (based on Rainey 1963, 

cited in Draper 1980).  The manifold for the animals migrating from Asia (Fig. 6b) 

captures the general pattern of migration, while the curvature upwards reflects a 

potential wide area of crossing over the Red Sea. These two examples introduce a 

second type of application of the manifolds: one could study the effect of distance-

dependent effects of migrants on organisms living on or near that route: for instance, as 

locusts (or birds) migrate, they may stop to graze (or hunt), thereby impacting primary 

producers (or consumers) living along the routes. The influence of such migrants on the 

spatial distribution of resources across the landscape should be distance-dependent and 

may be better explained with reference to the curvilinear coordinate system arising from 

the pattern of migration. 

Manifolds may  have applications in conservation, for instance in the design of marine 

protected areas.  For example, Marancik et al. (2012) presented data on spatial 

distribution of larval stages of grouper, an economically important fish, distributed 

across the Gulf of Mexico. In the northern sector of the gulf, early stage larvae 

concentrate along the shelf break. The manifold (Fig 6c) follows closely the patterns of 

distribution and the shelf break. Grouper are overfished (Marancik et al. 2012) and the 

approximation of manifolds could be used to establish marine protected areas (MPAs) if 

such areas are mapped with respect to manifold coordinates. The issue of MPAs is 
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highlighted in the study of Planes et al. (2009) who mapped the position of anemones 

inhabited by the orange clownfish (Amphiprion percula) around Kimbe Island, in Papua 

New Guinea. The manifold (Fig. 6d) approximated from the spatial position of such 

anemones follows roughly the coastline curvature of Kimbe Island. Distances among 

anemones on the manifold may be used to study the process of dispersal and 

connectivity at the spatial scale covered of the whole coastline. 

Regional manifolds may be useful to test alternative EGDs explaining community 

connectivity, such as those inquiline metacommunities existing in the pitcher plant 

Sarracenia purpurea (Buckley et al. 2003, Milner and Kneitel 2005). Pitcher plants 

accumulate water in their (cup shaped) leaves and hence support local communities of 

invertebrates and protozoans. Buckley et al. (2003) studied latitudinal gradients in 

species richness in those meta-communities across the North American continent. In the 

USA, the distribution of pitcher plants is restricted to the eastern seaboard; I used spatial 

positions of those populations studied by Buckley et al. (2003) and those in southern 

Canada to fit a manifold that may explain patterns of connectivity. Other populations 

were not used because pitcher plants show a widespread distribution across Canada and 

1D manifolds will not be useful to explain connectivity. The manifold (Fig. 6e) captures 

quite well the curvature of the geographic distribution of pitcher plants. Note however 

that some projections lie outside the range of distribution; this is likely due to the small 

number of data points used to approximate the manifold as well as the strong curvature 

of the distribution. This issue may be solved by approaching the manifold to a larger 

number of local populations in the map. Notwithstanding the issue, the connectivity 

among plants will be explained mostly by the distances along the manifold (originating 

axis z1, see example in figure 5b).  

6. Discussion 

Perhaps the main contribution of spatial ecology, meta-population theory and landscape 

ecology have been in highlighting the ecological importance of spatial distances 

between interacting organisms, or between different types of resources or habitable 

patches. Such contributions have challenged the assumptions of closed and well-mixed 

populations. This article highlights  the curved nature of the spaces where many 

ecological processes occur (by extension  distances among organisms are not necessary 

linear). Hence, this is a contribution, along with other approaches (e.g. fractal distances: 

Edwards et al. 2007, oceanographic distance: White et al. 2010, minimum cost 
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distances: Geenberg et al. 2011), to make  Euclidean or geographical distances testable 

assumptions in studies of patterns of species distribution.  

The main idea proposed here is to view migration as if organisms were moving along 

curvilinear geometrical objects (smooth manifolds), shaped by the interactions between 

behaviour and landscape. In this view, the curvilinear pathways are the “shortest 

realised paths” between habitat patches, an idea that is consistent with the concept of 

“minimum cost corridors/surfaces” used in landscape ecology (Estrada-Peña 2003, 

Geenberg et al. 2011). Such “shortest paths”, defined on the manifolds, become 

segments of the manifold geodesics. In physics, manifold geodesics are interpreted as 

the pathways of minimal energy (e.g. the circular trajectory of a passive particle 

captured in an eddy). This will be also the case if organisms drift with the wind or water 

currents. However, migration/dispersal pathways are usually shaped by behavioural 

responses to the elements of the landscape (food, predators, topography); in many 

instances, such pathways result from a process of optimization, driven by selective 

forces such as the necessity to minimise energy costs and mortality risks (Alerstam et al. 

2003). In such scenario, the manifold geodesics constitute pathways of maximum 

fitness shaped by natural selection.  

The introduction of manifolds and the definition of geodesics led to the formulation of a 

procedure to test of alternative EGDs as metrics of distance-dependent phenomena (e.g. 

connectivity, species interactions). Such metrics enables one to formulate mechanistic 

models that result in linear statistical models. The models are mechanistic at the 

ecological level because distinct manifold geometries (when constructed as in Fig. 3) 

connect different patterns of animal behaviour, biotic and abiotic factors (e.g. landscape 

topography, the quality of the habitat matrix) with patterns of species distributions. The 

models are linear thanks to the coordinate systems defined on curved spaces. The 

models can be applied to spatial position of habitat patches or organisms depending on 

the question; in particular this  application will become useful as data on track 

annotation (i.e. records of spatial positions of migrating organisms while en route) 

become available (e.g. see Mandel et al. 2011). In this case, each individual path 

becomes a replicate unit and the manifold is the estimated average path followed by 

migrants.  

The geometrical view to transport and dispersal will be useful in the field of meta-

population, meta-community ecology (Connolly et al. 1999, Armsworth 2002, Cowen 

2006, Holyoak et al. 2005). There are a number of potential applications related to 
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climate change, habitat fragmentation, invasive species and the transmission of diseases 

(Kokko and López-Sepulcre 2008, Holyoak and Heath 2016). For instance, in response 

to habitat fragmentation and overfishing, the design of networks of marine protected 

areas consider distances as key criteria to ensure connectivity (Costello et al. 2010, 

Gaines et al. 2010) and such distances arise from the geometry of the larval dispersal 

plume. Another area of application is the dynamics of invasion, considered one of the 

most important threats to biodiversity (Bellard et al. 2013, Seebens et al. 2013): here 

manifolds can help in identifying the paths to invasion (as shown in the idealised 

example discussed in section 3). 

The geometrical view to animal movement proposed here should have important 

applications in landscape ecology. For instance, one can test for different metrics of 

distance dependent interactions, occurring e.g. while organisms are en route (i.e. as 

migrants interact with organisms of the habitat matrix or as an invading species 

undergoes range expansion). Migrants (e.g. locusts: Simpson et al. 1999) may consume 

food and modify the biotic components of the landscape. In addition, some migrating 

organisms (e.g. geese: Giroux et al. 2012) subsidise populations located along or at the 

end of migrating pathways. Hence, manifold approaches could improve our 

understanding of the role of allochthonous subsidization in food web structure. 

Migrating birds are vectors of viruses that can infect humans (Lam et al. 2012); Lam et 

al (2012) showed that phylogeographic models incorporating information on the 

migration routes improved the fit of sequence data on influenza virus, as compared to 

models assuming homogeneous or random rates of gene flow among localities. 

Manifolds can help the development of such models with the incorporation of 

curvilinear geometry of dispersal pathways in e.g. isolation by distance models.  

In the types of applications discussed above, the geometric approach proposed here 

enables the formulation of testable mechanistic models.  For instance, in the marine 

environment, dispersal patterns are driven by hydrodynamic features and larval vertical 

migration; this is shown in the example of Ayata et al. (2010) where different manifolds 

were approximated by the NLPCA. There are in addition other similar examples based 

on numerical modelling (Marta-Almeida et al. 2006, Paris et al. 2007, Robins et al. 

2013) as well as field studies on larval behaviour and distribution (Forward and 

Tankersley 2001, Queiroga and Blanton 2004, Shanks et al. 2005). Likewise, insect 

migrations are driven by behaviour (e.g. avoid flying over sea:  Shashar et al. 2005) and 

atmospheric processes (Drake and Farrow 1988, Chapman et al. 2010). Bird migratory 
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routes are also shaped by climatic conditions, landscape topography as well as the 

distribution of foraging habitats (Mandel et al. 2011, Trierweiller et al. 2014). In all 

these scenarios it is likely that hypothesis testing favours a curvilinear EGD. In other 

scenarios, hypothesis testing may favour Euclidean or geographic distances as EGD 

(e.g. locust swarms in West Africa: Draper 1980; inquiline communities of pitcher 

plants in North Canada: Buckley et al. 2003).  

There are cases, where trajectories are not smooth; in some of those cases, trajectories 

may be better approximated as fractal objects (e.g. Schneider 1994, Cap 5); connectivity 

on rivers and streams can be modelled through different types of dendritic network 

approaches (Peterson et al. 2013, Melles et al. 2015). In cases where trajectories are 

smooth but show self-crossings, the geometric approach proposed here is not valid 

because it is not possible to produce a one to one mapping of each point of the manifold 

(e.g. if the trajectory is looking  like “∞” there is are two points showing the same 

coordinates).  

It is likely that whether curvilinear EGDs are better at explaining animal movement 

depends on the scale of observation. For instance, in  inquiline meta-communities in 

pitcher plants, Milner and Kneitel (2005) defined three spatial scales of connectivity: 

among leaves of the same plant, among plants from the same local (plant) population, 

and among plant populations distributed across the North American continent. 

Curvilinear dispersal may best represent patterns at the largest of the three spatial scales. 

Dispersal among leaves of the same plant may be viewed as occurring in 3D Euclidean 

space and hence better explained by Euclidean distances. More generally, at small 

scales, animal movements have been abstracted as fractal objects or correlated random 

walks arising from the landscape topography and behaviour (Crist et al. 1992; Edwards 

et al. 2007). Obviously, the concept of “small scale” will vary with body size and 

movement capabilities because animals as small as heterotrophic protozoans and as 

large as birds exhibit such behaviours (Bartumeus et al. 2003; Edwards et al. 2007). The 

fact that movement patterns and behaviour may be scale-dependent is consistent with 

the notion that smooth manifolds can be considered locally flat but regionally curved. 

At least three statistical issues should be kept in mind at the time of using manifold 

approximation. First, there are different methods (Gorban et al. 2008) and my goal was 

not to promote a specific one, but to explore the potential of such techniques. Second, 

manifold approximation techniques are based on iterative methods that are sensitive to 

the initial values and they can be stuck in local minima (Gorban et al. 2008). A key 
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point is to avoid model overfitting, which results in overly complex manifolds 

characterised by an excessive number of loops. For NLPCA, model complexity is 

controlled by a penalty term and Scholz (2012) provides a procedure for model 

validation using such term. The manifold, as any other statistic, is sensitive to the 

number and dispersion of the observations across the landscape; hence, a better 

approximation of the manifold will be achieved with large samples. Third, at the stage 

of model selection/hypothesis testing, the usual issues arising from assumptions about 

distribution of residual errors or spatial autocorrelation (Dorman et al. 2007; Kissling 

and Carl 2008, Zuur et al. 2009) will apply. The geometric approach proposed here 

addresses the problem of model specification, which is the most important issue around 

model fitting (Faraway 2014); this is achieved through the transformation of spatial 

coordinates defined on a Euclidean (or geographical) space into coordinates on a 

curvilinear manifold. 

Overall, a geometrical view to animal movement, as occurring along smooth manifolds, 

could further help us  to explain how such distance-dependent processes drive patterns 

of species distribution. This approach enables the test of alternative definitions of 

distance, either Euclidean, geographic or curvilinear at least in three areas of ecology. 

Within meta-population (and community) ecology one could use them to evaluate the 

consequence of connectivity on ecological patterns; in this case, the manifold approach 

enables the correct calculation of distances between source and receiving habitat 

patches. Within landscape ecology the introduction of manifolds enables the correct 

calculation of distances along the path of migration in order to study e.g. the effects of 

migrants on organisms living along the routes. The development of numerical models of 

larval transport and the procedures of animal track annotation along the migration routes 

should make manifolds a very useful tool in understanding the role of dispersal and 

migration in ecological patterns.   
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Figure Legends 

Figure 1. Idealised trajectories during larval transport associated to an eddie system. (1) 

Populations located at sea bottom habitats (red patches) release larvae (trajectories as 

blue dots) that ascend and are captured by an eddie (light blue disc with rotating 

arrow).. Larval pathways are constrained by behaviour (upwards migration) and the 

eddie circulation. (2) The collection of pathways delineates a region of a 2D smooth 

manifold (in green). 
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Figure 2. Understanding curvature and geodesics. The panels depict a series of points 

and trajectories on two manifolds (a plane and a paraboloid) placed on an 3D Euclidean 

space where a Cartesian coordinate system (x,y,z) is defined. For the case of the 

paraboloid there is tangent plane (ellipses) i.e. touching the point in question, but not 

crossing to the other side. At any point (black circles), three vectors, perpendicular to 

each other, are defined: the tangent vector (T blue), touching the point in the direction 

of the path; the tangential normal vector (n, red), perpendicular to the tangent vector but 

in the plane; the surface normal (N, thick black arrows), perpendicular to the plane 

pointing away from the manifold. (A) Displacements along a straight line (blue) results 

in that all vectors remain parallel; displacement along a curve makes (red) makes the 

tangent vector change direction; in consequence the tangential normal also changes 

direction. (B) Displacement on a curvilinear manifold along a geodesic path (blue). The 

tangent vector changes direction showing that the path is curved. The path bends on the 

3D space, defining a vector, proportional to the surface normal and characterised by the 

normal curvature (kn). Notice that the surface normal changes direction. However, the 

tangential normal remains parallel along the path: this property is shared with the 

straight path in (A): they are both geodesics on their respective manifolds (the plane and 

the paraboloid).  (C) Non geodesic path (red): The path now curves on the manifold, 

defining a vector (proportional to the tangential normal) characterised by the geodesic 

curvature (kg). Notice that now the tangential normal changes direction as in the curved 

line in (A).  Because of the extra curvature (kg > 0) distances between two points along 

any non-geodesic curve will be longer than those defined by the geodesics. 
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Figure 3. Summary of modelling scenarios (a,b) and abundance distributions (c,d). (a) 

Idealised bay with 350 patches colonised by a species from the NE starting with habitat 

patch h1; habitat patches (hi) are indicated as black dots. Thin arrows:  direction of 

natural transport of marine species along the bay; coastal waters are separated from 

offshore water by a front. Thick arrows: natural migration pathways followed by 

terrestrial species. Hatched arrows: maritime transport (only two paths are indicated). 

(b) Three idealised parabolic bays, with different curvature parameter (σ-value). 

Modelled average abundance distributions are shown in (c) for the natural transport and 

(d) for maritime transport; in both cases for σ =0.5 and decay constant =0.1 (for 

simplicity, numbers in z axis were removed, but are shown in Figs. S2 and S4). 
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Figure 4. Summary of results of model simulations for three idealised bays varying in 

shoreline curvature for a decay constant β=0.2 (see supplementary figures for other β-

values). Left panels: average of simulated abundance patterns along the bays. Right 

panel: ΔAIC calculated for each simulation, comparing true model (natural transport 

mechanism) modelled as a parabola (P) vs maritime transport mechanism with 

abundance depending on x-coordinates only (1D), on x+y coordinates (2D) and on 

Euclidean distance (Euc) from the habitat patch (see Table 1 for equations). Positive 

ΔAIC: AIC of the alternative model is higher than that of the true model. 
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Figure 5. Examples of manifold approximation based on modelled larval pathways and 

dispersal kernels. (a) Manifold approximated from dispersal pathways obtained from 

numerical models of transport of spiny lobster larvae in the Yucatan Bay (source: Butler 

et al. (2011). (b) New coordinate system derived from the projections of the dispersal 

plume on the manifold and the distances between the projection and each point of the 

plume. Blue symbols: spatial position of selected sites of larval release. (c-d) Manifolds 

approximated from dispersal plume obtained by modelling transport under different 

types of larval behaviour in Bay of Biscay (source: Ayata et al. 2010). 
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Figure 6. Examples of manifold approximation based on actual data. (a) migration 

pathways of Montagu’s harriers crossing from Europe of sub-Saharan Africa, (b) desert 

locus swarm distribution and migration, (c) patterns of abundance of fish larvae, (d) 

spatial distribution of anemones and (e) spatial distribution of plants. Sources are as 

follows (a) Trierweiller et al. (2014);  (b) Draper (1980); (c) Mrancick et al. (2012)  (d) 

Planes et al. (2009), (e) Buckley (2003). 
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Table Legends 

Table 1. Models used to test different hypothetical scenarios of larval dispersal, the 

associated manifold, coordinate systems and predictor variables. 

Models Manifold Coordinate system Equation 

True model 

(Parabola) 

1D Parabola Arc-length  ln(N) = a+ bz,  

z= arc length of parabola   

1D 1D flat space Cartesian ln(N) = a+ b·x 

2D  2D flat space Cartesian ln(N) = a+ b·x + c·y 

Euclidean 2D flat space Cartesian ln(N) = a+b·h , h= (x’
2
+y’

2
)
1/2 

x’=x+6.7, y’=y(x)-y(x’) 
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Table 2. Average ΔAIC between models using Cartesian system vs the true model (Z: 

based on Arc length coordinates) for nine combinations of distance decaying (β) and 

coastline shapes (σ) parameters.  

 2D vs Z 1D longshore vs Z Euclidean vs Z 

σ  0.5 1 2 0.5 1 2 0.5 1 2 

β  = 0.1 97.2 7.8 1.1 95.7 6.8 0.2 391.8 97.3 1.0 

β  = 0.2 222.1 27.2 1.7 220.3 26.0 0.8 573.1 224.2 4.1 

β  = 0.3 317.5 54.0 2.6 315.6 52.7 1.5 682.7 317.7 8.4 

 


