274 research outputs found

    PENGAPLIKASIAN KOMPOSTER SAMPAH ORGANIK UNTUK PEMENUHAN KEBUTUHAN PUPUK DI DESA PALENGAAN DAJAH KECAMATAN PALENGAAN KABUPATEN PAMEKASAN

    Get PDF
    Sampah adalah suatu material hasil dari aktivitas manusia maupun alam yang terbuang atau dibuang dan belum memiliki nilai ekonomis. Sampah yang digunakan dalam kegiatan sosialisasi ini adalah sampah organik yaitu memanfaatkan sampah dapur karena dapat dijumpai dengan mudah, selain itu dapat diolah menjadi pupuk organik yang bermanfaat untuk kesuburan tanah. Tujuan yang harus dicapai dalam kegiatan pengabdian ini antara lain terciptanya kelompok PKK yang dapat mengolah sampah organik (khususnya sampah dapur) menjadi pupuk dan menjadikannya sesuatu yang bermanfaat. Terciptanya masyarakat dengan pola hidup yang bersih, sehat, dan berwawasan lingkungan.Target dalamkegiatanini adalah anggota PemberdayaanKesejahteraanKeluarga (PKK) Palengaan Dajah sebanyak 23 peserta. Metode pelaksanaan kegiatan pengabdian masyarakat ini yaitu memberi sosialisasi dan pelatihan pembuatan komposter sampah organik bertipe anaerob serta pengolahan sampah organik menjadi pupuk. Pupuk yang dihasilkan dari hasil pengomposan berupa Pupuk Organik Cair (POC) dan pupuk padatan. Sosialisasi bertujuan untuk memberikan informasi kepada peserta tentang cara instalasi alat komposter. Sosialisasi tersebut dilakukan dengan menunjukkan dua alat komposter yang sebelumnya sudah dirakit oleh tim panitia. Komposter pertama sudah digunakan untuk pengomposan selama kurang lebih 4 hari sebelum waktu pelaksanaan dan digunakan sebagai contoh dalam penyampaian materi, sedangkankomposter kedua diberikan kepada peserta untuk dipraktikkan secara langsung

    A multi-spatial scale analysis of land use and climate change impacts on water quality and crop productivity for major US cropping systems

    Get PDF
    Agricultural production of food and fuel within the Corn Belt region of the Midwest, US plays a crucial role in the US economy. Nutrient loss under agricultural production within this region has a significant impact on water quality at both local and national scales and is expected to worsen under future climate conditions. Future climate projections include increases in carbon dioxide concentrations ([CO2]), temperature, vapor pressure deficit (VPD), and variability of extreme precipitation events, which have the potential to alter crop productivity, nutrient transformations, and energy and water budgets. Here we present an approach that quantifies the potential impact of future climate on crop productivity and nutrient loss and how this could affect water quality. Our approach also quantifies the impact of mitigation strategies that have the potential to improve water quality and total crop production within this region. One mitigation strategy that has the potential to reduce nitrogen (N) losses at multiple spatial scales is the integration of perennial grasses, like miscanthus (Miscanthus × giganteus Greef et Deu.; Chae et al., 2014) and switchgrass (Panicum virgatum L.). However, N reduction will depend on the land on which perennials are planted and the crops they displace. A multi-scale economic and biophysical modeling approach was used to quantify the impact of land use and climate change on crop productivity and water quality under contemporary and future climates. Using an integrated economic-agroecosystem modeling approach, we analyzed the impact of land use change driven by a national scale economic policy (i.e., Renewable Fuel Standard (RFS2)) on water quality at the scale of the Mississippi Atchafalaya River Basin (MARB) under contemporary climate conditions. While the RFS2 mandate could be met with less cropland area, our results indicated that reaching the full RFS2 mandate with both corn stover and perennial grasses would require additional corn area and N inputs to meet the demand of cellulosic biofuel production. By including both corn stover and perennial grasses as viable feedstocks, perennial grasses were not placed on regions of active, high N leaching cropland and therefore did not improve water quality relative to the baseline. However, a reduction in N loss within the MARB could be obtained if perennial grasses are used to reach the full cellulosic portion of the RFS2 mandate. To quantify the sensitivity of elevated [CO2], temperature, and VPD on crop productivity under future climate conditions, we improved an agroecosystem model to account for reproductive heat stress on corn and soybean yield. We conducted a high-resolution, field-scale modeling analysis for the Raccoon River Basin (RRB) in west-central Iowa. Our results suggest that corn yields could decrease and soybean yields could increase by the end of the 21st century relative to the baseline, even with the inclusion of reproductive heat stress on soybeans. However, if the hybrid growing season length is increased for corn cultivars, one could obtain corn yields comparable to today by the end of the century. Furthermore, sensitivity to high VPD and temperature on yield was reduced at higher [CO2] for soybean, but not corn, due to the CO2 fertilization effect. Building off the integrated modeling approach and improved version of the agroecosystem model, we conducted simulations to analyze the impact of climate-driven crop productivity changes and the strategic integration of miscanthus based on profit and N loss on water quality for the RRB under contemporary and future climate conditions. Three scenarios were created to isolate the effect of future climate and miscanthus on N loss when compared to a baseline scenario. Our results indicate that N loss could be greater under future climates in the late 21st century relative to contemporary climate due to a reduction in crop productivity and the associated reduction of N uptake, as well as increased mineralization rates due to higher temperatures. The inclusion of miscanthus provided a reduction in N loss under both contemporary and future conditions. However, more miscanthus replaced annual row crops under future climate relative to contemporary climate due to lower profitability and higher N loss under corn and soybean production. While the inclusion of miscanthus under future climate did not reduce N loss below levels obtained under the baseline scenario, it did result in a reduction of total N loss below levels obtained in the historical evaluation simulation. Together, these analyses suggest that the integration of strategically placed miscanthus has the potential to reduce N loss under contemporary climate conditions at both the small and large basin scales. Under future climate conditions, corn yields are projected to decrease while soybean and miscanthus yields are projected to increase relative to contemporary conditions. Mineralization rates were also projected to increase under warmer conditions in future climate projections, resulting in an increase of N loss under current land use, especially with a reduction in crop productivity. However, the strategic implementation of miscanthus on land with low profitability and high N leaching resulted in a greater N loss reduction under future climate than contemporary climates

    Hypercysteinemia, a potential risk factor for central obesity and related disorders in Azores, Portugal

    Get PDF
    In Azores, the standardized mortality rate for coronary artery disease (CAD) is nearly the double when compared to mainland Portugal. The aim of this study was to compare the prevalence of conventional CAD risk factors, as well as the plasma aminothiol profile (and its major determinants), between two groups of healthy subjects from Ponta Delgada (in Azores) and Lisbon (in mainland) cities, searching for precocious biomarker(s) of the disease. The study groups consisted of 101 healthy volunteers from Ponta Delgada (PDL) and 121 from Lisbon, aged 20-69 years. No differences in the prevalence of classical CAD risk factors were found between the study groups, except in physical inactivity and related central obesity, which were both higher in PDL men than in those from Lisbon. Hypercysteinemia, which seems to result from sulfur-rich amino acid diets and/or vitamin B12 malabsorption, revealed to be significantly more prevalent in PDL vs. Lisbon subjects (18% vs. 4%, P=0.001), namely, in male gender. Moreover, plasma Cys levels predicted waist circumference (β coefficient = 0.102, P=0.032) and concomitant central obesity and were also associated with insulin resistance. Nevertheless, hyperhomocysteinemia prevalence was similar in both groups, despite the fact that PDL subjects exhibited a higher rate of vitamin B12 deficiency compared to those from Lisbon (19% vs. 6%, P=0.003). Owing to the nature of this study design, a cause-effect relationship between high plasma Cys levels and central obesity or CAD risk could not be derived, but results strongly suggest that hypercysteinemia is a potential risk factor for metabolic disorders, i.e., obesity and insulin resistance, and CAD in Azores, a hypothesis that asks for confirmation through further large prospective studies.)is work was supported by the Regional Government of the Azores (FRCT), Portugal (PhD grant number M3.1.2/F/017/ 2011 to AL, postdoctoral grant number M3.1.7/F/020/2011 to RF, and research project number M1.1.C/I/001/2016).info:eu-repo/semantics/publishedVersio

    Circulating levels of adipose products and differences in fat distribution in the ovulatory and anovulatory phenotypes of polycystic ovary syndrome.

    Get PDF
    Central fat distribution is increased in anovulatory women with polycystic ovary syndrome (PCOS) compared with ovulatory PCOS and matched controls. Among secreted adipocytokines, this is reflected mainly in lower levels of adiponectin

    Relationship of the APOE polymorphism and lipid profile: A population-based study in the Azores Islands (Portugal)

    Get PDF
    European Human Genetics Conference 2009: Abstract P17.18 em Livro de Resumos. Austria Center Vienna, Vienna, Austria, Saturday, May 23 – Tuesday, May 26, 2009.The factors leading to a two-fold mortality rate from coronary artery disease (CAD) in the Azores, as compared to Mainland Portugal, have not been elucidated. Previous studies reported a population tendency for hypercholesterolemia, one of the main factors contributing to the development of atherosclerosis (AT), considered the primary cause of CAD. Apolipoprotein E has a key role in plasma lipid metabolism, given its function as a ligand for cell-surface receptor mediated uptake of lipoproteins. Polymorphism in the apolipoprotein gene (APOE) results in three major isoforms encoded by three codominant alleles (E2, E3 and E4). With the purpose of establishing the pattern of variation at the APOE locus and determining its association with lipid profile, we studied a random sample of 298 unrelated, apparently healthy individuals of Azorean origin. In nearly 50% of the sample total cholesterol (TC) was above 200mg/dl; in 25% of the individuals LDL-cholesterol (LDL-C) was higher than 130 mg/dl. Allele frequencies were 0.0833, 0.8317 and 0.0850 for E2, E3 and E4, respectively. Genotype frequencies were higher for E3*E3 genotype (66.1%); genotype distribution displayed conformity with Hardy-Weinberg expectations. No differences in allelic frequencies were found in comparison with other Caucasian populations, namely with mainland Portugal. E3*E4 individuals presented the highest cholesterol levels. Analysis of variance performed with the most represented genotypes (E2*E3, E3*E3 and E3*E4) revealed a clear association between the genotypic composition and TC, as well as LDL-C, thus confirming in this population, the role of APOE as one of the genetic determinants of AT

    Nano-technology and nano-toxicology

    Get PDF
    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology

    Inhalation exposure methodology.

    Get PDF
    Modern man is being confronted with an ever-increasing inventory of potentially toxic airborne substances. Exposures to these atmospheric contaminants occur in residential and commercial settings, as well as in the workplace. In order to study the toxicity of such materials, a special technology relating to inhalation exposure systems has evolved. The purpose of this paper is to provide a description of the techniques which are used in exposing laboratory subjects to airborne particles and gases. The various modes of inhalation exposure (whole body, head only, nose or mouth only, etc.) are described at length, including the advantages and disadvantages inherent to each mode. Numerous literature citations are included for further reading. Among the topics briefly discussed are the selection of appropriate animal species for toxicological testing, and the types of inhalation studies performed (acute, chronic, etc.)

    The "ram effect": new insights into neural modulation of the gonadotropic axis by male odors and socio-sexual interactions

    Get PDF
    Reproduction in mammals is controlled by the hypothalamo-pituitary-gonadal (HPG) axis under the influence of external and internal factors such as photoperiod, stress, nutrition, and social interactions. Sheep are seasonal breeders and stop mating when day length is increasing (anestrus). However, interactions with a sexually active ram during this period can override the steroid negative feedback responsible for the anoestrus state, stimulate LH secretion and eventually reinstate cyclicity. This is known as the ram effect and research into the mechanisms underlying it is shedding new light on HPG axis regulation. The first step in the ram effect is increased LH pulsatile secretion in anestrus ewes exposed to a sexually active male or only to its fleece, the latter finding indicating a pheromone-like effect. Estradiol secretion increases in all ewes and this eventually induces a LH surge and ovulation, just as during the breeding season. An exception is a minority of ewes that exhibit a precocious LH surge (within 4h) with no prior increase in estradiol. The main olfactory system and the cortical nucleus of the amygdala are critical brain structures in mediating the ram effect since it is blocked by their inactivation. Sexual experience is also important since activation (increased c-fos expression) in these and other regions is greatly reduced in sexually naïve ewes. In adult ewes kisspeptin neurons in both arcuate and preoptic regions and some preoptic GnRH neurons are activated 2h after exposure to a ram. Exposure to rams also activates noradrenergic neurons in the locus coeruleus and A1 nucleus and increased noradrenalin release occurs in the posterior preoptic area. Pharmacological modulation of this system modifies LH secretion in response to the male or his odor. Together these results show that the ram effect can be a fruitful model to promote both a better understanding of the neural and hormonal regulation of the HPG axis in general and also the spe

    POMC: The Physiological Power of Hormone Processing.

    Get PDF
    Pro-opiomelanocortin (POMC) is the archetypal polypeptide precursor of hormones and neuropeptides. In this review, we examine the variability in the individual peptides produced in different tissues and the impact of the simultaneous presence of their precursors or fragments. We also discuss the problems inherent in accurately measuring which of the precursors and their derived peptides are present in biological samples. We address how not being able to measure all the combinations of precursors and fragments quantitatively has affected our understanding of the pathophysiology associated with POMC processing. To understand how different ratios of peptides arise, we describe the role of the pro-hormone convertases (PCs) and their tissue specificities and consider the cellular processing pathways which enable regulated secretion of different peptides that play crucial roles in integrating a range of vital physiological functions. In the pituitary, correct processing of POMC peptides is essential to maintain the hypothalamic-pituitary-adrenal axis, and this processing can be disrupted in POMC-expressing tumors. In hypothalamic neurons expressing POMC, abnormalities in processing critically impact on the regulation of appetite, energy homeostasis, and body composition. More work is needed to understand whether expression of the POMC gene in a tissue equates to release of bioactive peptides. We suggest that this comprehensive view of POMC processing, with a focus on gaining a better understanding of the combination of peptides produced and their relative bioactivity, is a necessity for all involved in studying this fascinating physiological regulatory phenomenon

    The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pulmonary surfactant reduces surface tension and is present at the air-liquid interface in the alveoli where inhaled nanoparticles preferentially deposit. We investigated the effect of titanium dioxide (TiO<sub>2</sub>) nanosized particles (NSP) and microsized particles (MSP) on biophysical surfactant function after direct particle contact and after surface area cycling <it>in vitro</it>. In addition, TiO<sub>2 </sub>effects on surfactant ultrastructure were visualized.</p> <p>Methods</p> <p>A natural porcine surfactant preparation was incubated with increasing concentrations (50-500 μg/ml) of TiO<sub>2 </sub>NSP or MSP, respectively. Biophysical surfactant function was measured in a pulsating bubble surfactometer before and after surface area cycling. Furthermore, surfactant ultrastructure was evaluated with a transmission electron microscope.</p> <p>Results</p> <p>TiO<sub>2 </sub>NSP, but not MSP, induced a surfactant dysfunction. For TiO<sub>2 </sub>NSP, adsorption surface tension (γ<sub>ads</sub>) increased in a dose-dependent manner from 28.2 ± 2.3 mN/m to 33.2 ± 2.3 mN/m (p < 0.01), and surface tension at minimum bubble size (γ<sub>min</sub>) slightly increased from 4.8 ± 0.5 mN/m up to 8.4 ± 1.3 mN/m (p < 0.01) at high TiO<sub>2 </sub>NSP concentrations. Presence of NSP during surface area cycling caused large and significant increases in both γ<sub>ads </sub>(63.6 ± 0.4 mN/m) and γ<sub>min </sub>(21.1 ± 0.4 mN/m). Interestingly, TiO<sub>2 </sub>NSP induced aberrations in the surfactant ultrastructure. Lamellar body like structures were deformed and decreased in size. In addition, unilamellar vesicles were formed. Particle aggregates were found between single lamellae.</p> <p>Conclusion</p> <p>TiO<sub>2 </sub>nanosized particles can alter the structure and function of pulmonary surfactant. Particle size and surface area respectively play a critical role for the biophysical surfactant response in the lung.</p
    corecore