1,591 research outputs found

    The origins of a new Trypanosoma brucei rhodesiense sleeping sickness outbreak in eastern Uganda.

    No full text
    BACKGROUND: Sleeping sickness, caused by two trypanosome subspecies, Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense, is a parasitic disease transmitted by the tsetse fly in sub-Saharan Africa. We report on a recent outbreak of T b rhodesiense sleeping sickness outside the established south-east Ugandan focus, in Soroti District where the disease had previously been absent. Soroti District has been the subject of large-scale livestock restocking activities and, because domestic cattle are important reservoirs of T b rhodesiense, we investigated the role of cattle in the origins of the outbreak. METHODS: We identified the origins of cattle entering the outbreak area in the 4 years preceding the outbreak. A matched case-control study was conducted to assess whether the distance of villages from the main market involved with restocking was a risk factor for sleeping sickness. We investigated the spatial clustering of sleeping sickness cases at the start of the outbreak. FINDINGS: Over 50% (1510 of 2796) of cattle traded at the market were reported to have originated from endemic sleeping sickness areas. The case-control study revealed that distance to the cattle market was a highly significant risk factor for sleeping sickness (p<0.001) and that there was a significant clustering of cases (27 of 28) close to the market at the start of the outbreak (p<0.001). As the outbreak progressed, the average distance of cases moved away from the cattle market (0.014 km per day, 95% CI 0.008-0.020 km per day, p<0.001). INTERPRETATIONS: The results are consistent with the disease being introduced by cattle infected with T b rhodesiense imported to the market from the endemic sleeping sickness focus. The subsequent spread of the disease away from the market suggests that sleeping sickness is becoming established in this new focus. Public health measures directed at controlling the infection in the animal reservoir should be considered to prevent the spread of sleeping sickness

    The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya

    Get PDF
    Background In many parts of the developing world, pigs are kept under low-input systems where they roam freely to scavenge food. These systems allow poor farmers the opportunity to enter into livestock keeping without large capital investments. This, combined with a growing demand for pork, especially in urban areas, has led to an increase in the number of small-holder farmers keeping free range pigs as a commercial enterprise. Despite the benefits which pig production can bring to a household, keeping pigs under a free range system increases the risk of the pig acquiring diseases, either production-limiting or zoonotic in nature. This study used Global Positioning System (GPS) technology to track free range domestic pigs in rural western Kenya, in order to understand their movement patterns and interactions with elements of the peri-domestic environment. Results We found that these pigs travel an average of 4,340 m in a 12 hr period and had a mean home range of 10,343 m2 (range 2,937–32,759 m2) within which the core utilisation distribution was found to be 964 m2 (range 246–3,289 m2) with pigs spending on average 47% of their time outside their homestead of origin. Conclusion These are the first data available on the home range of domestic pigs kept under a free range system: the data show that pigs in these systems spend much of their time scavenging outside their homesteads, suggesting that these pigs may be exposed to infectious agents over a wide area. Control policies for diseases such as Taenia solium, Trypanosomiasis, Trichinellosis, Toxoplasmosis or African Swine Fever therefore require a community-wide focus and pig farmers require education on the inherent risks of keeping pigs under a free range system. The work presented here will enable future research to incorporate movement data into studies of disease transmission, for example for the understanding of transmission of African Swine Fever between individuals, or in relation to the life-cycle of parasites including Taenia solium

    Automated reliability assessment for spectroscopic redshift measurements

    Get PDF
    We present a new approach to automate the spectroscopic redshift reliability assessment based on machine learning (ML) and characteristics of the redshift probability density function (PDF). We propose to rephrase the spectroscopic redshift estimation into a Bayesian framework, in order to incorporate all sources of information and uncertainties related to the redshift estimation process, and produce a redshift posterior PDF that will be the starting-point for ML algorithms to provide an automated assessment of a redshift reliability. As a use case, public data from the VIMOS VLT Deep Survey is exploited to present and test this new methodology. We first tried to reproduce the existing reliability flags using supervised classification to describe different types of redshift PDFs, but due to the subjective definition of these flags, soon opted for a new homogeneous partitioning of the data into distinct clusters via unsupervised classification. After assessing the accuracy of the new clusters via resubstitution and test predictions, unlabelled data from preliminary mock simulations for the Euclid space mission are projected into this mapping to predict their redshift reliability labels.Comment: Submitted on 02 June 2017 (v1). Revised on 08 September 2017 (v2). Latest version 28 September 2017 (this version v3

    EZ: A Tool for Automatic Redshift Measurement

    Full text link
    We present EZ (Easy redshift), a tool we have developed within the VVDS project to help in redshift measurement from otpical spectra. EZ has been designed with large spectroscopic surveys in mind, and in its development particular care has been given to the reliability of the results obtained in an automatic and unsupervised mode. Nevertheless, the possibility of running it interactively has been preserved, and a graphical user interface for results inspection has been designed. EZ has been successfully used within the VVDS project, as well as the zCosmos one. In this paper we describe its architecture and the algorithms used, and evaluate its performances both on simulated and real data. EZ is an open source program, freely downloadable from http://cosmos.iasf-milano.inaf.it/pandora.Comment: accepted for publication in Publications of the Astronomical Society of the Pacifi

    The CANADA-FRANCE REDSHIFT SURVEY XIII: The luminosity density and star-formation history of the Universe to z ~ 1

    Full text link
    The comoving luminosity density of the Universe is estimated from the CFRS faint galaxy sample in three wavebands (2800A, 4400A and 1 micron) over the redshift range 0 < z < 1. In all three wavebands, the comoving luminosity density increases markedly with redshift. For a (q_0 = 0.5, Omega = 1.0) cosmological model, the comoving luminosity density increases as (1+z)2.1±0.5(1+z)^{2.1 \pm 0.5} at 1 micron, as (1+z)2.7±0.5(1+z)^{2.7 \pm 0.5} at 4400A and as (1+z)3.9±0.75(1+z)^{3.9 \pm 0.75} at 2800A, these exponents being reduced by 0.43 and 1.12 for (0.05,0.1) and (-0.85,0.1) cosmological models respectively. The variation of the luminosity density with epoch can be reasonably well modelled by an actively evolving stellar population with a Salpeter initial mass function (IMF) extending to 125 M_sun, a star-formation rate declining with a power 2.5, and a turn-on of star-formation at early epochs. A Scalo (1986) IMF extending to the same mass limit produces too many long-lived low mass stars. This rapid evolution of the star-formation rate and comoving luminosity density of the Universe is in good agreement with the conclusions of Pei and Fall (1995) from their analysis of the evolving metallicity of the Universe. One consequence of this evolution is that the physical luminosity density at short wavelengths has probably declined by two orders of magnitude since z ~ 1.Comment: uuencoded compressed tar file containing 8 page Tex file, 2 postscript figures and 2 tables. Ap J Letters, in press. Also available at http://www.astro.utoronto.ca/~lilly/CFRS/papers.htm

    Culture and its perception in strategic alliances : does it affect the performance? : an exploratory study into Dutch-German ventures

    Get PDF
    This exploratory study researches the fit of 6 National Culture (NC) and 6 Corporate Culture (CC) parameters in 12 Dutch-German cooperations. 24 firms were asked to verify the nature of their cultural fit and relating this perception to the perceived alliance performance. There appeared to be a strong (not necessary causal) relationship between the perception of cultural fit and the corresponding alliance performance This finding may have important implications for alliance management. Instead of its general preoccupation with strategic and operational fit among alliance partners, more attention should be paid to cultural fit. The inclusion of cultural fit indicators in the overall partner selection process might well pay off in terms of increased alliance performance

    The VIMOS VLT Deep Survey - Evolution of the luminosity functions by galaxy type up to z=1.5 from first epoch data

    Get PDF
    From the first epoch observations of the VVDS up to z=1.5 we have derived luminosity functions (LF) of different spectral type galaxies. The VVDS data, covering ~70% of the life of the Universe, allow for the first time to study from the same sample and with good statistical accuracy the evolution of the LFs by galaxy type in several rest frame bands from a purely magnitude selected sample. The magnitude limit of the VVDS allows the determination of the faint end slope of the LF with unprecedented accuracy. Galaxies have been classified in four spectral classes, using their colours and redshift, and LFs have been derived in the U, B, V, R and I rest frame bands from z=0.05 to z=1.5. We find a significant steepening of the LF going from early to late types. The M* parameter is significantly fainter for late type galaxies and this difference increases in the redder bands. Within each of the galaxy spectral types we find a brightening of M* with increasing redshift, ranging from =< 0.5 mag for early type galaxies to ~1 mag for the latest type galaxies, while the slope of the LF of each spectral type is consistent with being constant with redshift. The LF of early type galaxies is consistent with passive evolution up to z~1.1, while the number of bright early type galaxies has decreased by ~40% from z~0.3 to z~1.1. We also find a strong evolution in the normalization of the LF of latest type galaxies, with an increase of more than a factor 2 from z~0.3 to z~1.3: the density of bright late type galaxies in the same redshift range increases of a factor ~6.6. These results indicate a strong type-dependent evolution and identifies the latest spectral types as responsible for most of the evolution of the UV-optical luminosity function out to z=1.5.Comment: 18 pages with encapsulated figures, revised version after referee's comments, accepted for publication in A&
    corecore