225 research outputs found

    Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces

    Full text link
    We study the heat transfer between two parallel metallic semi-infinite media with a gap in the nanometer-scale range. We show that the near-field radiative heat flux saturates at distances smaller than the metal skin depth when using a local dielectric constant and investigate the origin of this effect. The effect of non-local corrections is analysed using the Lindhard-Mermin and Boltzmann-Mermin models. We find that local and non-local models yield the same heat fluxes for gaps larger than 2 nm. Finally, we explain the saturation observed in a recent experiment as a manifestation of the skin depth and show that heat is mainly dissipated by eddy currents in metallic bodies.Comment: Version without figures (8 figures in the complete version

    Not all feldspars are equal: a survey of ice nucleating properties across the feldspar group of minerals

    Get PDF
    Mineral dust particles from wind-blown soils are known to act as effective ice nucleating particles in the atmosphere and are thought to play an important role in the glaciation of mixed phase clouds. Recent work suggests that feldspars are the most efficient nucleators of the minerals commonly present in atmospheric mineral dust. However, the feldspar group of minerals is complex, encompassing a range of chemical compositions and crystal structures. To further investigate the ice-nucleating properties of the feldspar group we measured the ice nucleation activities of 15 characterized feldspar samples. We show that alkali feldspars, in particular the potassium feldspars, generally nucleate ice more efficiently than feldspars in the plagioclase series which contain significant amounts of calcium. We also find that there is variability in ice nucleating ability within these groups. While five out of six potassium-rich feldspars have a similar ice nucleating ability, one potassium rich feldspar sample and one sodium-rich feldspar sample were significantly more active. The hyper-active Na-feldspar was found to lose activity with time suspended in water with a decrease in mean freezing temperature of about 16°C over 16 months; the mean freezing temperature of the hyper-active K-feldspar decreased by 2°C over 16 months, whereas the "standard" K-feldspar did not change activity within the uncertainty of the experiment. These results, in combination with a review of the available literature data, are consistent with the previous findings that potassium feldspars are important components of arid or fertile soil dusts for ice nucleation. However, we also show that there is the possibility that some alkali feldspars may have enhanced ice nucleating abilities, which could have implications for prediction of ice nucleating particle concentrations in the atmosphere

    An instrument for quantifying heterogeneous ice nucleation in multiwell plates using infrared emissions to detect freezing

    Get PDF
    Low concentrations of ice nucleating particles (INPs) are thought to be important for the properties of mixed phase clouds, but their detection is challenging. While instruments to quantify INPs online can provide relatively high time resolution data, they typically cannot quantify very low INP concentrations. Furthermore, typical online instruments tend to report data at a single defined set of conditions. Hence, there is a need for instruments where INP concentrations of less than 0.01 L-1 can be routinely and efficiently determined. The use of larger volumes of suspension in drop assays increases the sensitivity of an experiment to rarer INPs or rarer active sites due to the increase in aerosol or surface area of particulates per droplet. Here we describe and characterise the InfraRed-Nucleation by Immersed Particles Instrument (IR-NIPI), a new immersion freezing assay that makes use of IR emissions to determine the freezing temperature of individual 50μL droplets each contained in a well of a 96-well plate. Using an IR camera allows the temperature of individual aliquots to be monitored. Freezing temperatures are determined by detecting the sharp rise in well temperature associated with the release of heat caused by freezing. In this paper we first present the calibration of the IR temperature measurement, which makes use of the freezing period after initial nucleation when wells warm and their temperature is determined by the ice-liquid equilibrium temperature, i.e. 0°C when the water activity is ~1. We then tested the temperature calibration using ~100 μm chips of K-feldspar, by immersing these chips in 1 μL droplets on an established cold stage (μL-NIPI) as well as in 50 μL droplets on IR-NIPI; the results were consistent with one another indicating no bias in the reported freezing temperature. In addition we present measurements of the efficiency of the mineral dust NX-illite and a sample of atmospheric aerosol collected on a filter in the city of Leeds. NX-illite results are consistent with literature data and the atmospheric INP concentrations were in good agreement with the results from the μL-NIPI instrument. This demonstrates the utility of this approach, which offers a relatively high throughput of sample analysis and access to low INP concentrations

    The Digital MIQE Guidelines Update: Minimum Information for Publication of Quantitative Digital PCR Experiments for 2020

    Get PDF
    Digital PCR (dPCR) has developed considerably since the publication of the Minimum Information for Publication of Digital PCR Experiments (dMIQE) guidelines in 2013, with advances in instrumentation, software, applications, and our understanding of its technological potential. Yet these developments also have associated challenges; data analysis steps, including threshold setting, can be difficult and preanalytical steps required to purify, concentrate, and modify nucleic acids can lead to measurement error. To assist independent corroboration of conclusions, comprehensive disclosure of all relevant experimental details is required. To support the community and reflect the growing use of dPCR, we present an update to dMIQE, dMIQE2020, including a simplified dMIQE table format to assist researchers in providing key experimental information and understanding of the associated experimental process. Adoption of dMIQE2020 by the scientific community will assist in standardizing experimental protocols, maximize efficient utilization of resources, and further enhance the impact of this powerful technology

    Credibility and adjustment: gold standards versus currency boards

    Full text link
    It is often maintained that currency boards (CBs) and gold standards (GSs) are alike in that they are stringent monetary rules, the two basic features of which are high credibility of monetary authorities and the existence of automatic adjustment (non discretionary) mechanism. This article includes a comparative analysis of these two types of regimes both from the perspective of the sources and mechanisms of generating confidence and credibility, and the elements of operation of the automatic adjustment mechanism. Confidence under the GS is endogenously driven, whereas it is exogenously determined under the CB. CB is a much more asymmetric regime than GS (the adjustment is much to the detriment of peripheral countries) although asymmetry is a typical feature of any monetary regime. The lack of credibility is typical for peripheral countries and cannot be overcome completely even by “hard” monetary regimes.http://deepblue.lib.umich.edu/bitstream/2027.42/40078/3/wp692.pd

    The role of art education in adult prisons: The Western Australian experience

    Get PDF
    Incarceration costs are high; in Australia, for example, each prisoner costs an average of AUD 115,000 per year. Other countries are also feeling the fiscal pinch of high incarceration costs, and a number of jurisdictions are now closing some of their prisons. Most prison costs are non-discretionary (accommodation, meals, etc.). But some of the costs relate to discretionary activities, services and facilities (including schooling). In terms of correctional education, many prison managers try to invest any meagre correctional education resources available to them in those classes and courses which have proven to have the best results, such as improved labour market outcomes and reduced recidivism, minimising subsequent re-imprisonment. Course offers for prisoner-students include vocational training, adult basic education (ABE) and art studies. The two-tiered question this paper asks is: do art classes and courses produce these measurable outcomes and, if not, are there other reasons why they should continue to be funded? Addressing these issues, the authors argue that (1) these measurable outcomes are too narrow and do not reflect the complex but less quantifiable benefits to the individual and the community of studying art in prison, and (2) better measures of all impacts of art studies in prisons are needed, including qualitative and humanitarian aspects

    Insights into the structure-function relationships of dimeric C3d fragments

    Get PDF
    Cleavage of C3 to C3a and C3b plays a central role in the generation of complement-mediated defences. Although the thioester-mediated surface deposition of C3b has been well-studied, fluid phase dimers of C3 fragments remain largely unexplored. Here we show C3 cleavage results in the spontaneous formation of C3b dimers and present the first X-ray crystal structure of a disulphide-linked human C3d dimer. Binding studies reveal these dimers are capable of crosslinking complement receptor 2 and preliminary cell-based analyses suggest they could modulate B cell activation to influence tolerogenic pathways. Altogether, insights into the physiologically-relevant functions of C3d(g) dimers gained from our findings will pave the way to enhancing our understanding surrounding the importance of complement in the fluid phase and could inform the design of novel therapies for immune system disorders in the future
    corecore