263 research outputs found

    Hilbert transforms and the equidistribution of zeros of polynomials

    Get PDF
    We improve the current bounds for an inequality of Erdős and Turán from 1950 related to the discrepancy of angular equidistribution of the zeros of a given polynomial. Building upon a recent work of Soundararajan, we establish a novel connection between this inequality and an extremal problem in Fourier analysis involving the maxima of Hilbert transforms, for which we provide a complete solution. Prior to Soundararajan (2019), refinements of the discrepancy inequality of Erdős and Turán had been obtained by Ganelius (1954) and Mignotte (1992)

    The Drosophila suppressor of sable protein binds to RNA and associates with a subset of polytene chromosome bands.

    Get PDF
    Mutations of the Drosophila melanogaster suppressor of sable [su(s)] gene, which encodes a 150-kDa nuclear protein [Su(s)], increase the accumulation of specific transcripts in a manner that is not well understood but that appears to involve pre-mRNA processing. Here, we report biochemical analysis of purified, recombinant Su(s) [rSu(s)] expressed in baculovirus and in Escherichia coli as maltose binding protein (MBP) fusions and immunocytochemical analysis of endogenous Su(s). This work has shown that purified, baculovirus-expressed rSu(s) binds to RNA in vitro with a high affinity and limited specificity. Systematic evolution of ligands by exponential enrichment was used to identify preferred RNA targets of rSu(s), and a large proportion of RNAs isolated contain a full or partial match to the consensus sequence UCAGUAGUCU, which was confirmed to be a high-affinity rSu(s) binding site. An MBP-Su(s) fusion protein containing the N-terminal third of Su(s) binds RNAs containing this sequence with a higher specificity than full-length, baculovirus-expressed rSu(s). The consensus sequence resembles both a cryptic 5' splice site and a sequence that is found near the 5' end of some Drosophila transcripts. Immunolocalization studies showed that endogenous Su(s) is distributed in a reticulated pattern in Drosophila embryo and salivary gland nuclei. In salivary gland cells, Su(s) is found both in the nucleoplasm and in association with a subset of polytene chromosome bands. Considering these and previous results, we propose two models to explain how su(s) mutations affect nuclear pre-mRNA processing

    Long-term radiographic follow-up of the Nissen fundoplication in children

    Full text link
    This study examined 46 children 5–9 years (mean 6.7) after Nissen fundoplication surgery for gastroesophageal reflux (GER). Eleven were deceased and ten of the 35 families declined objective evaluation. The remaining 25 children (71%) had a barium swallow examination. In 16 of the 25 patients the fundoplication was intact. In 2 patients a small portion of the fundoplication was displaced above the diaphragm. In 5 patients there was residual esophageal disease. In 3 patients (one with esophageal disease), with a hiatus hernia prior to surgery, despite immediate postoperative reduction, the barium swallow examination done for this study revealed recurrent hiatus hernia but no GER. Long-term results of the Nissen fundoplication reveal success in eliminating clinically significant gastroesophageal reflux. Those patients with esophageal disease prior to the surgery need close interval follow-up to monitor continuing problems.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46689/1/247_2006_Article_BF02389563.pd

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure.</p> <p>Results and Discussion</p> <p>ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems</p> <p>Conclusion</p> <p>A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.</p
    corecore