57 research outputs found

    Locally Cold Flows from Large-Scale Structure

    Full text link
    We show that the "cold" Hubble flow observed for galaxies around the Milky Way does not represent a problem in cosmology but is due to the particular geometry and dynamics of our local wall. The behavior of the perturbed Hubble flow around the Milky Way is the result of two main factors: at small scales (R < 1 Mpc) the inflow is dominated by the gravitational influence of the Milky Way. At large scales (R > 1 Mpc) the out flow reflects the expansion of our local wall which "cools down" the peculiar velocities. This is an intrinsic property of walls and is independent of cosmology. We find the dispersion of the local Hubble flow (1 < R < 3 Mpc) around simulated "Milky Way" haloes located at the centre of low-density cosmological walls to be {\sigma}_H ~ 30 km/s, in excellent agreement with observations. The expansion of our local wall is also reflected in the value of the measured local Hubble constant. For "Milky Way" haloes inside walls, we find super-Hubble flows with h_local \simeq 0.77 - 1.13. The radius of equilibrium (R_0) depends not only on the mass of the central halo and the Hubble expansion but also on the dynamics given by the local LSS geometry. The super-Hubble flow inside our local wall has the effect of reducing the radius at which the local expansion balances the gravitational influence of the Milky Way. By ignoring the dynamical effect of the local wall, the mass of the Milky Way estimated from R_0 can be underestimated by as much as ~ 30%.Comment: 5 pages, 3 figures, Submitted to MNRA

    Unfolding the Hierarchy of Voids

    Get PDF
    We present a framework for the hierarchical identification and characterization of voids based on the Watershed Void Finder. The Hierarchical Void Finder is based on a generalization of the scale space of a density field invoked in order to trace the hierarchical nature and structure of cosmological voids. At each level of the hierarchy, the watershed transform is used to identify the voids at that particular scale. By identifying the overlapping regions between watershed basins in adjacent levels, the hierarchical void tree is constructed. Applications on a hierarchical Voronoi model and on a set of cosmological simulations illustrate its potential.Comment: 5 pages, 2 figure

    Polar disk galaxy found in wall between voids

    Get PDF
    We have found an isolated polar disk galaxy in what appears to be a cosmological wall situated between two voids. This void galaxy is unique as its polar disk was discovered serendipitously in an HI survey of SDSS void galaxies, with no optical counterpart to the HI polar disk. Yet the HI mass in the disk is comparable to the stellar mass in the galaxy. This suggests slow accretion of the HI material at a relatively recent time. There is also a hint of a warp in the outer parts of the HI disk. The central, stellar disk appears relatively blue, with faint near UV emission, and is oriented (roughly) parallel to the surrounding wall, implying gas accretion from out of the voids. The considerable gas mass and apparent lack of stars in the polar disk, coupled with the general underdensity of the environment, supports recent theories of cold flow accretion as an alternate formation mechanism for polar disk galaxies.Comment: 5 pages, 5 figures, accepted for publication in ApJ Letter

    Spin alignment of dark matter haloes in filaments and walls

    Get PDF
    The MMF technique is used to segment the cosmic web as seen in a cosmological N-body simulation into wall-like and filament-like structures. We find that the spins and shapes of dark matter haloes are significantly correlated with each other and with the orientation of their host structures. The shape orientation is such that the halo minor axes tend to lie perpendicular to the host structure, be it a wall or filament. The orientation of the halo spin vector is mass dependent. Low mass haloes in walls and filaments have a tendency to have their spins oriented within the parent structure, while higher mass haloes in filaments have spins that tend to lie perpendicular to the parent structure.Comment: 4 pages, 2 figure

    The cosmic web for density perturbations of various scales

    Full text link
    We follow the evolution of galaxy systems in numerical simulation. Our goal is to understand the role of density perturbations of various scales in the formation and evolution of the cosmic web. We perform numerical simulations with the full power spectrum of perturbations, and with spectrum cut at long wavelengths. Additionally, we have one model, where we cut the intermediate waves. We analyze the density field and study the void sizes and density field clusters in different models. Our analysis shows that the fine structure (groups and clusters of galaxies) is created by small-scale density perturbations of scale 8\leq 8 \Mpc. Filaments of galaxies and clusters are created by perturbations of intermediate scale from 8\sim 8 to 32\sim 32 \Mpc, superclusters of galaxies by larger perturbations. We conclude that the scale of the pattern of the cosmic web is determined by density perturbations of scale up to 100\sim 100 \Mpc. Larger perturbations do not change the pattern of the web, but modulate the richness of galaxy systems, and make voids emptier. The stop of the increase of the scale of the pattern of the cosmic web with increasing scale of density perturbations can probably be explained as the freezing of the web at redshift z0.7z\simeq 0.7.Comment: 12 pages, 7 figures, accepted for publication in Astronomy and Astrophysic

    The Void Galaxy Survey: Optical Properties and H I Morphology and Kinematics

    Full text link
    We have carefully selected a sample of 60 galaxies that reside in the deepest underdensities of geometrically identified voids within the SDSS. HI imaging of 55 galaxies with the WSRT reveals morphological and kinematic signatures of ongoing interactions and gas accretion. We probe a total volume of 485 Mpc^3 within the voids, with an angular resolution of 8 kpc at an average distance of 85 Mpc. We reach column density sensitivities of 5 x 10^19 cm^-2, corresponding to an HI mass limit of 3 x 10^8 M_sun. We detect HI in 41 galaxies, with total masses ranging from 1.7 x 10^8 to 5.5 x 10^9 M_sun. The upper limits on the 14 non-detections are not inconsistent with their luminosities, given their expected HI mass to light ratios. We find that the void galaxies are generally gas rich, low luminosity, blue disk galaxies, with optical and HI properties that are not unusual for their luminosity and morphology. The sample spans a range of absolute magnitudes (-16.1 > M_r > -20.4) and colors (0.06 < g-r < 0.87), and includes disk and irregular galaxies. We also identify three as early type galaxies, all of which are not detected in HI. All galaxies have stellar masses less than 3 x 10^10 M_sun, and many have kinematic and morphological signs of ongoing gas accretion, suggesting that the void galaxy population is still in the process of assembling. The small scale clustering in the void, within 600 kpc and 200 km/s, is similar to that in higher density regions, and we identify 18 HI rich neighboring galaxies in the voids. Most are within 100 kpc and 100 km/s of the targeted galaxy, and we find no significant population of HI rich low luminosity galaxies filling the voids, contrary to what is predicted by simulations.Comment: 34 pages, 33 figures (including Atlas in Appendix), accepted for publication in A

    The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution

    Get PDF
    We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters, filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the structures.}Comment: Replacement with higher resolution figures. 28 pages, 17 figures. For Full Resolution Version see: http://www.astro.rug.nl/~weygaert/tim1publication/miguelmmf.pd

    Only the Lonely: H I Imaging of Void Galaxies

    Full text link
    Void galaxies, residing within the deepest underdensities of the Cosmic Web, present an ideal population for the study of galaxy formation and evolution in an environment undisturbed by the complex processes modifying galaxies in clusters and groups, as well as provide an observational test for theories of cosmological structure formation. We have completed a pilot survey for the HI imaging aspects of a new Void Galaxy Survey (VGS), imaging 15 void galaxies in HI in local (d < 100 Mpc) voids. HI masses range from 3.5 x 10^8 to 3.8 x 10^9 M_sun, with one nondetection with an upper limit of 2.1 x 10^8 M_sun. Our galaxies were selected using a structural and geometric technique to produce a sample that is purely environmentally selected and uniformly represents the void galaxy population. In addition, we use a powerful new backend of the Westerbork Synthesis Radio Telescope that allows us to probe a large volume around each targeted galaxy, simultaneously providing an environmentally constrained sample of fore- and background control sample of galaxies while still resolving individual galaxy kinematics and detecting faint companions in HI. This small sample makes up a surprisingly interesting collection of perturbed and interacting galaxies, all with small stellar disks. Four galaxies have significantly perturbed HI disks, five have previously unidentified companions at distances ranging from 50 to 200 kpc, two are in interacting systems, and one was found to have a polar HI disk. Our initial findings suggest void galaxies are a gas-rich, dynamic population which present evidence of ongoing gas accretion, major and minor interactions, and filamentary alignment despite the surrounding underdense environment.Comment: 53 pages, 18 figures, accepted for publication in AJ. High resolution available at http://www.astro.columbia.edu/~keejo/kreckel2010.pd

    The Void Galaxy Survey

    Full text link
    The Void Galaxy Survey (VGS) is a multi-wavelength program to study \sim60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.Comment: 9 pages, 6 figures. This is an extended version of a paper to appear in "Environment and the Formation of Galaxies: 30 years later", Proceedings of Symposium 2 of JENAM 2010, eds. I. Ferreras, A. Pasquali, ASSP, Springer. Version with highres figures at http://www.astro.rug.nl/~weygaert/vgs_jenam_weygaert.col.pd

    The Hierarchical Structure and Dynamics of Voids

    Full text link
    Contrary to the common view voids have very complex internal structure and dynamics. Here we show how the hierarchy of structures in the density field inside voids is reflected by a similar hierarchy of structures in the velocity field. Voids defined by dense filaments and clusters can de described as simple expanding domains with coherent flows everywhere except at their boundaries. At scales smaller that the void radius the velocity field breaks into expanding sub-domains corresponding to sub- voids. These sub-domains break into even smaller sub-sub domains at smaller scales resulting in a nesting hierarchy of locally expanding domains. The ratio between the magnitude of the velocity field responsible for the expansion of the void and the velocity field defining the sub voids is approximately one order of magnitude. The small-scale components of the velocity field play a minor role in the shaping of the voids but they define the local dynamics directly affecting the processes of galaxy formation and evolution. The super-Hubble expansion inside voids makes them cosmic magnifiers by stretching their internal primordial density fluctuations allowing us to probe the small scales in the primordial density field. Voids also act like time machines by "freezing" the development of the medium-scale density fluctuations responsible for the formation of the tenuous web of structures seen connecting proto galaxies in computer simulations. As a result of this freezing haloes in voids can remain "connected" to this tenuous web until the present time. This may have an important effect in the formation and evolution of galaxies in voids by providing an efficient gas accretion mechanism via coherent low-velocity streams that can keep a steady inflow of matter for extended periods of time.Comment: High-res version are related media here: http://skysrv.pha.jhu.edu/~miguel/Papers/Hierarchy_voids/index.htm
    corecore