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ABSTRACT

Aims. We present here a new method, MMF, for automatically segmenting cosmic structure into its basic components: clusters,
filaments, and walls. Importantly, the segmentation is scale independent, so all structures are identified without prejudice as to their
size or shape. The method is ideally suited for extracting catalogues of clusters, walls, and filaments from samples of galaxies in
redshift surveys or from particles in cosmological N-body simulations: it makes no prior assumptions about the scale or shape of the
structures.
Methods. Our Multiscale Morphology Filter (MMF) method has been developed on the basis of visualization and feature extraction
techniques in computer vision and medical research. The density or intensity field of the sample is smoothed over a range of scales.
The smoothed signals are processed through a morphology response filter whose form is dictated by the particular morphological
feature it seeks to extract, and depends on the local shape and spatial coherence of the intensity field. The morphology signal at each
location is then defined to be the one with the maximum response across the full range of smoothing scales.
The success of our method in identifying anisotropic features such as filaments and walls depends critically on the use of an optimally
defined intensity field. This is accomplished by applying the DTFE reconstruction methodology to the sample particle or galaxy
distribution.
Results. We have tested our MMF Filter against a set of heuristic models of weblike patterns such as are seen in the Megaparsec
cosmic matter distribution. To test its effectiveness in the context of more realistic configurations we also present preliminary results
from the MMF analysis of an N-body model. Comparison with alternative prescriptions for feature extraction shows that MMF is a
remarkably strong structure finder

Key words. cosmology: theory – large-scale structure of Universe – methods: statistical – surveys

1. Introduction

On scales from a few Megaparsecs up to more than a hun-
dred Megaparsecs, the spatial cosmic matter distribution dis-
plays a salient and pervasive weblike pattern which is perceived
in the first instance as a cellular structure. The distribution of
galaxies in large scale redshift surveys such as the 2-deg Field
Galaxy Redshift Survey (2dF: Colless et al. 2003) and the Sloan
Digital Sky Survey (SDSS: York et al. 2000) clearly delineate
this Cosmic Web (Bond et al. 1996; see van de Weygaert 2002,
for a review).

Large computer simulations of the evolution of cosmic struc-
ture (Springel et al. 2005) show prominent cellular patterns
arising from gravitational instability. Galaxies accumulate in
flattened walls, elongated filaments and dense compact clus-
ters. These structures surround large near-empty void regions
(Zeldovich et al. 1982). Their spatial distribution displays a
distinctive frothy texture, interconnected in a cosmic weblike
pattern.

While it is rather straightforward to find qualitative descrip-
tions of the spatial structure and components of the cosmic web,
a useful, and physically meaningful, quantitative analysis has
proven to be far from trivial. This would be important, for ex-
ample, when we wish to study the effect of environment on the
formation of galaxies and their halos.

1.1. Multi-scale analysis

We present here a new method for automatically segmenting
cosmic structure into its basic components: clusters, filaments,
and walls. Importantly, the segmentation is scale independent,
so all structures are identified without prejudice as to their size
or shape.

There are two parts to this: firstly, the reconstruction of a
continuous density field from a point sample and secondly, the
identification of structures within that density field. For the first
part we use the Delaunay Tessellation Field Estimator (DTFE)
technique of Schaap & van de Weygaert (2000). The second
part, which is the main thrust of this paper, consists of a series of
morphology filters that identify, in a scale independent manner,
particular kinds of structure in data. The method is referred to
as the Multiscale Morphology Filter (MMF) and is based on the
kind of Scale Space analysis that has in recent years proved so
successful in imaging science.

It is worth emphasising at this juncture that we have chosen
a specific implementation of this kind of multi-scale analysis.
Our choice is made on the following grounds: (a) it is simple to
understand and program, (b) it works under quite general condi-
tions and (c) the approach is generic and easy to modify. There
are many alternative multi-scale strategies: we leave those for
another day or for other people to follow up. Thus we shall try
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to keep this presentation as general as possible so that the points
at which we make implementation specific choices are clear.

1.2. Emergence of hierarchical web-like structure

Structure in the Universe emerged as a result of the gravita-
tional growth of small amplitude primordial density and ve-
locity perturbations. Following the initial linear growth of the
Gaussian primordial perturbations, the gravitational clustering
process leads to the emergence of complex patterns and struc-
tures in the density field. At least three characteristics of the
midly nonlinear cosmic matter stand out.

The most prominent property is its hierarchical nature. The
gravitational clustering process proceeds such that small struc-
tures are the first to materialize and subsequently merge into ever
larger entities. As a result each emerging cosmic structure con-
sists of various levels of substructure. Hence, upon seeking to
identify structure at one characteristic spatial scale we need to
take into account a range of scales.

The second prominent aspect is that of the weblike geome-
try marked by highly elongated filamentary and flattened planar
structures. The existence of the cosmic web can be understood
through the tendency of matter concentrations to contract and
collapse gravitationally in an anisotropic manner.

A final conspicuous aspect is that of the dominant presence
of large roundish underdense regions, the voids. They form in
and around density troughs in the primordial density field.

The challenge for any viable analysis tool is to trace, high-
light and measure these features of the cosmic web.

1.3. Outline of this paper

We start in Sect. 3 by reviewing the DTFE method that is used to
sample discrete point sets onto a regular mesh. Then in Sect. 5
we introduce the basic ideas from scale space theory that we
will use. In Sect. 5 we introduce the morphology filters and give
them a geometrical interpretation. The filters are tested using
a Voronoi model in Sect. 9. We present brief results from an
N-body simulation in Sect. 10, leaving a detailed study to a sub-
sequent paper in this series.

2. Structure finding

Many attempts to describe, let alone identify, the features and
components of the Cosmic Web have been of a mainly heuristic
nature. There is a variety of statistical measures characterizing
specific aspects of the large scale matter distribution (for an ex-
tensive review see Martínez & Saar 2002). For completeness and
comparison, we list briefly a selection of methods for structure
characterisation and finding. It is perhaps interesting to note two
things about this list:

a) each of the methods tends to be specific to one particular
structural entity;

b) there are no explicit wall-finders.

This emphasises an important aspect of our Scale Space ap-
proach: it provides a uniform approach to finding Blobs,
Filaments and Walls as individual objects that can be catalogued
and studied.

2.1. Structure from higher moments

The clustering of galaxies and matter is most commonly de-
scribed in terms of a hierarchy of correlation functions. The

two-point correlation function (and its Fourier transform, the
power spectrum) remains the mainstay of cosmological cluster-
ing analysis and has a solid physical basis. However, the non-
trivial and nonlinear patterns of the cosmic web are mostly a
result of the phase correlations in the cosmic matter distribu-
tion (Ryden & Gramann 1991; Chiang & Coles 2000; Coles &
Chiang 2000). While this information is contained in the mo-
ments of cell counts (Peebles 1980; de Lapparent et al. 1991;
Gaztañaga 1992) and, more formally so, in the full hierarchy of
M-point correlation functions ξM, their measurement has proven
to be impractical for all but the lowest orders (Peebles 1980;
Szapudi 1998; Jones et al. 2005).

The Void probability Function (White 1979; Lachieze-Rey
et al. 1992) provided a characterisation of the “voidness” of the
Universe in terms of a function that combined information from
many higher moments of the point distribution. But, again, this
has not provided any identification of individual voids.

2.2. Topological methods

The shape of the local matter distribution may be traced on
the basis of an analysis of the statistical properties of its iner-
tial moments (Babul & Starkman 1992; Luo & Vishniac 1995;
Basilakos et al. 2001). These concepts are closely related to
the full characterization of the topology of the matter distribu-
tion in terms of four Minkowski functionals (Mecke et al. 1994;
Schmalzing et al. 1999). They are solidly based on the theory
of spatial statistics and also have the great advantage of being
known analytically in the case of Gaussian random fields. In
particular, the genus of the density field has received substan-
tial attention as a strongly discriminating factor between intrinsi-
cally different spatial patterns (Gott et al. 1986; Hoyle & Vogeley
2002).

The Minkowski functionals provide global characterisations
of structure. An attempt to extend its scope towards providing
locally defined topological measures of the density field has
been developed in the SURFGEN project defined by Sahni and
Shandarin and their coworkers (Sahni et al. 1998; Shandarin
et al. 2004). The main problem remains the user-defined, and
thus potentially biased, nature of the continuous density field
inferred from the sample of discrete objects. The usual filter-
ing techniques suppress substructure on a scale smaller than the
filter radius, introduce artificial topological features in sparsely
sampled regions and diminish the flattened or elongated mor-
phology of the spatial patterns. Quite possibly the introduction
of more advanced geometry based methods to trace the density
field may prove a major advance towards solving this problem.

Importantly, Martínez et al. (2005) and Saar et al. (2007)
have generalized the use of Minkowski Functionals by calculat-
ing their values in a hierarchy of scales generated from wavelet-
smoothed volume limited subsamples of the 2dF catalogue. This
approach is particularly effective in dealing with non-Gaussian
point distributions since the smoothing is not predicated on the
use of Gaussian smoothing kernels.

2.3. Cluster finding

In the context of analysing distributions of galaxies we can think
of cluster finding algorithms. There we might define a cluster
as an aggregate of neighbouring galaxies sharing some localised
part of velocity space. Algorithms like HOP attempt to do this.
However, there are always issues arising such as how to deal with
substructure: that perhaps comes down to the defintion of what
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a cluster is. Here we focus on defining coherent structures based
on particle positions alone. The velocity space data is not used
since there is no prior prejudice as to what the velocity space
should look like.

2.4. Filament finding

The connectedness of elongated supercluster structures in the
cosmic matter distribution was first probed by means of per-
colation analysis, introduced and emphasized by Zel’dovich
and coworkers (Zeldovich et al. 1982), while a related graph-
theoretical construct, the minimum spanning tree of the galaxy
distribution, was extensively probed and analysed by Bhavsar
and collaborators (Barrow et al. 1985; Graham 1995; Colberg
2007) in an attempt to develop an objective measure of
filamentarity.

Finding filaments joining neighbouring clusters has been
tackled, using quite different techniques, by Colberg et al. (2005)
and by Pimbblet (2005). More general filament finders have been
put forward by a number of authors. Stoica et al. (2005) use a
generalization of the classical Candy model to locate and cat-
alogue filaments in galaxy surveys. This approach has the ad-
vantage that it works directly with the original point process
and does not require the creation of a continuous density field.
However, it is very computationally intensive.

The mathematically most rigorous program for filament de-
scription and analysis is that of the skeleton analysis of density
fields by Novikov et al. (2006) (2D) and Sousbie et al. (2007)
(3D). Based on Morse theory (see Colombi et al. 2000) the
skeleton formalism analyzes continuous density fields and de-
tects morphological features – maxima and saddle points in the
density field – by relating density field gradients to the Hessian
of the density field (also see Doré et al. 2007). It results in an
elegant and effective tool with a particular focus towards trac-
ing the filamentary structures in the cosmic web. However, it is
computationally intensive and may be sensitive to the specific
method of reconstruction of the continuous density field. The
Hessian of the density field also forms the basis of the MMF
presented in this study, although MMF embeds this within a for-
malism that explicitly adresses the multiscale character of the
cosmic density field and includes the shape conserving abilities
of the tessellation based density field reconstruction Schaap &
van de Weygaert (2000).

2.5. Void finding

Voids are distinctive and striking features of the cosmic web,
yet finding them systematically in surveys and simulations has
proved rather difficult. There have been extensive searches for
voids in galaxy catalogues (Hoyle & Vogeley 2002; Plionis &
Basilakos 2002) and in numerical simulations (Arbabi-Bidgoli
& Müller 2002; Aikio & Mähönen 1998).

Several factors contribute to making systematic void-finding
difficult. The fact that voids are almost empty of galaxies means
that the sampling density plays a key role in determining what
is or is not a void (Schmidt et al. 2001). Moreover, void find-
ers are often predicated on building void structures out of cubic
cells (Kauffmann & Fairall 1991) or out of spheres (e.g. Patiri
et al. 2006). Such methods attempt to synthesize voids from
the intersection of cubic or spherical elements and do so with
varying degrees of success. The Aspen-Amsterdam Void Finder
Comparison Project of Colberg et al. (2007) will clarify many
of these issues.

The Watershed-based algorithm of Platen et al. (2007) aims
to avoid issues of both sampling density and shape.

2.6. Structure from scale space

Combining the local Hessian matrix eigenvalues on various
scales, this is the new technique that we are presenting here for
the first time in the cosmological context.

Scale space analysis looks for structures of a mathematically
specified type in a hierarchical, scale independent, manner. It
is presumed that the specific structural characteristic is quanti-
fied by some appropriate parameter (e.g.: density, eccentricity,
direction, curvature components). The data is filtered to produce
a hierarchy of maps having different resolutions, and at each
point, the dominant parameter value is selected from the hier-
archy to construct the scale independent map. We refer to this
scale-filtering processes as a Multiscale morphology filter.

For simplicity, the paper describes one specific implementa-
tion, or embodiment, of the process in relation to the problem of
cataloguing the structural elements of the cosmic web. Other em-
bodiments are possible, but the present one turns out to be highly
effective in structure segregation and feature identification.

While this sounds relatively straightforward, in practise a
number of things are required to execute the process. Firstly
there must be an unambiguous definition of the structure-
defining characteristic. In the present case we shall use the prin-
cipal components of the local curvature of the density field at
each point as a morphology type indicator. This requires that the
density be defined at all points of a grid, and so there must be
a method for going from a discrete point set to a grid sampled
continuous density field. We choose to do this using the DTFE
methodology since that does minimal damage to the structural
morphology of the density field.

Since we are looking for three distinct structural
morphologies, blobs, walls and filaments, we have to ap-
ply the segmentation process three times. However, since we
shall be using curvature components as structural indicators, we
shall have to eliminate the blobs before looking for filaments,
and we shall then have to eliminate the filaments before looking
for walls.

3. Resampling and rescaling point sets

The cosmological problem presents its own difficulties, not the
least of which is the fact that the data set is presented not as a
density field, but as a set of discrete points which are presumed
to sample some underlying density field. However, the filtering
procedures we use here for defining objects act on continuous
fields (or images) and require continuous first and second deriva-
tives of field values. It is therefore necessary to resample the
point set data on a grid. In doing this we need to assure ourselves
that the objects, structures, features and patterns in these fields
are resampled in an optimal way: both substructure and morpho-
logical characteristics must be preserved. To achieve this we use
the DTFE reconstruction of the density field.

3.1. The DTFE density field

The Delaunay Triangulation Field Estimator (“DTFE”) (Schaap
& van de Weygaert 2000; Schaap 2007) is a powerful new
method, based upon concepts from computational geometry
(Okabe et al. 2000) that offers a “safe” reconstruction in that
it accurately preserves the local features. DTFE produces a
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Fig. 1. DTFE image of a slice through the N-body simulation used in this work. Left: DTFE density field in a central slice. Right: the corresponding
particle distribution in a slice of width 5 h−1 Mpc.

morphologically unbiased and optimized continuous density
field retaining all features visible in a discrete galaxy or parti-
cle distribution.

The input samples for our analysis are mostly samples of
galaxy positions obtained by galaxy redshift surveys or the po-
sitions of a large number of particles produced by N-body simu-
lations of cosmic structure formation. In order to define a proper
continuous field from discrete distribution of points – com-
puter particles or galaxies – we translate the spatial point sam-
ple into a continuous density field by means of the Delaunay
Tessellation Field Estimator (Schaap & van de Weygaert 2000;
Schaap 2007).

The DTFE technique recovers fully volume-covering and
volume-weighted continuous fields from a discrete set of sam-
ple field values. The method has been developed by Schaap &
van de Weygaert (2000, also see Schaap 2007) and forms an
elaboration of the velocity interpolation scheme introduced by
Bernardeau & van de Weygaert (1996). It is based on the use of
the Voronoi and Delaunay tessellations of a given spatial point
distribution. It provides a basis for a natural, fully self-adaptive
filter in which the Delaunay tessellations are used as multidi-
mensional interpolation intervals.

The primary ingredient of the DTFE method is the Delaunay
tessellation of the particle distribution. The Delaunay tessel-
lation of a point set is the uniquely defined and volume-
covering tessellation of mutually disjunct Delaunay tetrahedra.
A Delaunay tetrahedron is defined by the set of four points
whose circumscribing sphere does not contain any of the other
points in the generating set (Delaunay 1934) (triangles in 2D).
The Delaunay tessellation is intimately related to the Voronoi
tessellation of the point set, they are each others dual. The
Voronoi tessellation of a point set is the division of space into
mutually disjunct polyhedra, each polyhedron consisting of the
part of space closer to the defining point than any of the other
points (Voronoi 1908; Okabe et al. 2000).

DTFE exploits three particular properties of Voronoi and
Delaunay tessellations. The tessellations are very sensitive to the
local point density. The DTFE method uses this fact to define a
local estimate of the density on the basis of the inverse of the vol-
ume of the tessellation cells. Equally important is their sensitiv-
ity to the local geometry of the point distribution, which allows

them to trace anisotropic features such as encountered in the cos-
mic web. Finally it uses the adaptive and minimum triangulation
properties of Delaunay tessellations to use them as adaptive spa-
tial interpolation intervals for irregular point distributions. In this
it is the first order version of the Natural Neighbour method (NN
method: Sibson 1980, 1981; Watson 1992; Braun & Sambridge
1995; Sukumar 1998; Okabe et al. 2000).

One of the important – and crucial – properties of a pro-
cessed DTFE density field is that it is capable of delineating
three fundamental characteristics of the spatial structure of the
Megaparsec cosmic matter distribution. It outlines the full hier-
archy of substructures present in the sampling point distribution,
relating to the standard view of structure in the Universe having
arisen through the gradual hierarchical buildup of matter con-
centrations. DTFE also reproduces any anisotropic patterns in
the density distribution without diluting their intrinsic geometri-
cal properties. This is a great advantage when seeking to analyze
the cosmic matter distribution, characterized by prominent fila-
mentary and wall-like components linking up into a cosmic web.
A third important aspect of DTFE is that it outlines the presence
and shape of voidlike regions. DTFE renders the low-density re-
gions as regions of slowly varying, moderately low density val-
ues through the interpolation definition of the DTFE field recon-
struction.

An outline of the DTFE reconstruction procedure can be
found in Appendix A.

3.2. Rescaling

In building the scale space we need to construct a hierarchy
of rescaled replicas of the original grid-sampled data. In this
paper this is done simply by applying a hierarchy of isotropic
Derivative of Gaussian smoothing filters to the data.

Of course, substructure and morphological characteristics
will be altered during this hierarchical smoothing process. The
smearing of features through smoothing is inevitable if we
smooth using isotropic filters and there has been some discussion
as to whether one might do better by rescaling in such a way as
to minimise feature smearing (for example Martínez et al. 2005;
Saar et al. 2007). It is possible to use refined (nonlinear) smooth-
ing procedures that minimize the side effects of smoothing
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but that issue is not addressed here. Here, we simply rescale us-
ing isotropic Gaussian filters: this seems to work very well and
avoids complications arising from using other filters.

4. Scale space analysis

In this contribution we introduce a method for recognizing and
identifying features in data based on the use of a “Scale Space”
representation of the data (Florack et al. 1992; Lindeberg 1998).
The Scale Space representation of a data set consists simply of
a sequence of copies of the data having different resolutions. A
feature searching algorithm is applied to all of these copies, and
the features are extracted in a scale independent manner by suit-
ably combining the information from all copies.

We use a particular feature recognition process based on
eigenvalues of the Hessian matrix of the density field. It should
be understood that the technique we describe here could well be
used with other feature recognition systems, such as, for exam-
ple, the ShapeFinder process (Sahni et al. 1998). Scale Space is
a powerful tool for scale independent data analysis.

4.1. Image processing

The use of this technique can be traced back to the work of David
Marr at M.I.T in the 1970’s (Marr & Hildreth 1998), reviewed
in his seminal book on the physiology of image understand-
ing: Vision (Marr 1980). There (loc. cit. Chapter 2, especially
Figs. 2–10 and 2–23) he describes what is called the “Primal
Sketch” and the use of what today are called “Marr Wavelets”
in extracting scale independent information. We apply precisely
this transformation to a scale space representation of a cosmo-
logical density field, and in doing so ostensibly extract features
in much the same way, according to Marr, that the human visual
cortex does.

More recently, Frangi et al. (1998) and Sato et al. (1998)
used Scale Space analysis for detecting the web of blood ves-
sels in a medical image. The vascular system is a notoriously
complex pattern of elongated tenuous features whose branching
make it closely resemble a fractal network. We translate, extend
and optimize this technology towards the recognition of the ma-
jor characteristic structural elements in the Megaparsec matter
distribution. The resulting methodology yields a unique frame-
work for the combined identification of dense, compact bloblike
clusters, of the salient and moderately dense elongated filaments
and of tenuous planar walls.

4.2. Multiscale structure identification

Segmentation of a density field into distinct, meaningful, com-
ponents has been one of the major goals of image processing
over the past decades. There are two stages involved: firstly pro-
viding a criterion describing the basis for the segmentation, be it
colour, texture, motion or some other attribute and secondly pro-
viding an algorithm whereby those distinguishing attributes can
be automatically and unambiguously identified. Ambiguities in
structure finding frequently occur when the sought-for structure
exists on a variety of scales that may be nested hierarchically.

4.3. The Multiscale Morphology Filter: outline

The technique presented here, the Multiscale Morphology Filter
(MMF), looks to synthesize global structures by identifying lo-
cal structures on a variety of scales and assembling them into

a single scale independent structural map. The assembly is done
by looking at each point and asking which of the structures found
on the various search scales dominates the local environment.
This is the essence of the so-called Scale Space approach. We
first provide an outline of the various stages involved with the
MMF method. In the subsequent sections we treat various as-
pects in more detail.

4.4. The analysis cycle

We are looking for three distinct morphologies within the same
distribution. This requires three passes through the data, each
time eliminating the features found in the previous pass. In the
first pass, the blobs in the dataset are identified along with their
enclosed datapoints. The points that are in blobs are eliminated
and then the filaments are identified with their constituent points.
After eliminating the filament points the walls and their con-
stituent points can be identified.
Each pass involves the following components and procedures:

• Point Dataset. For each pass this is the set of galaxies or
particles in an N-body model from which we are going to
extract a specified feature. In the first pass this is the full data
sample within which we are going to identify blobs. On the
second pass it is the original point set from which the points
in the blobs have been removed. Likewise for the third pass.
• DTFE Density Field. The discrete spatial distribution of

galaxies, or particles in a N-body computer model, is resam-
pled to give a continuous volume-filling density field map
fDTFE on a high resolution grid. In order to guarantee an
optimal representation of morphological features this is ac-
complished on the basis of the DTFE method (Schaap &
van de Weygaert 2000; Schaap 2007).
• Scale filtering. The raw DTFE density field fDTFE is filtered

over a range of spatial scales Rn in order to produce a family
Φ of smoothed density maps fS, n, each defining a level of
the Scale-Space representation. The range of scales is set by
the particular interest of the analysis.
• Hessian& Eigenvalues. The Hessian matrix∇ i j fS of the den-

sity field is computed at each point of each of the smoothed
density fields in the filtered Scale-Space density maps fS. At
each point the eigenvalues λk (k = 1, 2, 3) of the Hessian
matrix are determined.
• Morphology Mask. The Morphology Mask Emorph identifies

the locations obeying the required morphology/shape con-
straints. At every location in every map, E = 1 if the shape
constraint is valid, E = 0 if it does not. This is a “hard” filter.
• Shape Significance Map. A Feature shape Significance (or

fidelity) index Smorph is determined for the specified mor-
phology. This is done on the basis of the signs and ratios of
the three eigenvalues λk (k = 1, 2, 3), and thus dependent
only on the local variations of the field on the various scales
present in the scale space maps.
• Morphology Response Map. The Morphology Response

Filter, Mmorph, is the soft thresholded version of the shape
significance mapSmorph. It selects out the most locally shape
conformant features and is computed for each scale space
level by processing Smorph, weighted by a specified thresh-
old parameter β.
• Morphology Intensity Map. In order to avoid enhancing

noisy low intensity structures we include a Morphology
Intensity function Imorph that modulates the morphology
response map according to some measure of the feature
strength. We characterise feature strength by the values of
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Maps used in morphological analysis.

Symbol Name Description Eq.

Φ Scale Space Map Combination filtered density maps fS,n over all levels n. (3)

E Morphology Mask Region of space obeying shape constraint. (9)
E = 1: locations obeying shape constraint (Table 1)
E = 0: locations not obeying shape constraints

S Shape Significance Map Feature shape fidelity for each point locale.
Measures conformance to local shape criteria (9)

M Morphology Map Soft thresholded version of S. The threshold selects out the most
locally shape conformant features. Requires input of a threshold parameter β (10)

I Morphology Intensity Map Map of λ3 for blobs, λ2 for filaments or λ1 for walls
Modulates Morphology map, meant to avoid enhancing noisy low intensity structures (11)

T Morphology Filter Constructed from I andM. Morphology weighted filter
for the Morphology Mask. Provides each location which obeys the morphology constraint
with a measure of the strength of morphology signal. (12)

F Feature Map Product of morphology mask E and corresponding morphology filter T .
There is one Feature Map for each level in the Scale-Space, representing local structures as
seen on the different scales of the Scale-Space (13)

Ψ Scale-Space Map Stack Constructed from the Fi for all levels in the Scale-Space
Each pixel in this map is the greatest value of the corresponding pixels
in the Feature maps that make up the Scale-Space stack (14)

O Object Map Inclusion of astrophysical and cosmological criteria to select physically recognizable objects
Produced by thresholding Scale-Space Map Stack Ψ
Threshold criterion determined by cosmological/astrophysical considerations (Sect. 7)

the specifc eigenvalues: λ1 for the walls, λ2 for the filaments
and λ3 for the blobs.
• Morphology Filter. Morphology weighted filter Tmorph for

the Morphology Mask Emorph. Provides each location which
obeys the morphology constraint with a measure of the
strength of morphology signal.
• Feature Map. For each level of Scale-Space the feature map
Fmorph is constructed from the Feature Intensity Map Imorph
and the Morphology Response Map. This represents local
structures as seen on the different scales of the Scale-Space.
• Scale-Space Map Stack. By combining the individual

Feature Maps FL,morph of each level of Scale-Space, the ul-
timate scale independent map of features is produced, the
Scale-Space Map StackΨ. Each pixel in this map is the max-
imum value of the corresponding pixels in the Feature maps
that make up the Scale-Space stack.
• Object Maps. Astrophysical and Cosmological criteria de-

termine the final Object Maps Omorph. These maps are
produced by thresholding the Scale-Space Map Stack Ψ ac-
cording to a criterion translating a feature map of physically
recognizable objects.
• Datapoint identification. Datapoints within the feature con-

tours of the object map Omorph are identified. They are re-
moved from the original dataset at each pass through the fea-
ture finding process.

5. Scale space technology

5.1. Scale-space filtering

The so-called Scale-Space approach to morphology consists
simply of calculating and comparing morphology indicators on

a variety of scales. Fundamental in this is the ability to view
a given dataset on different scales. This task is accomplished
simply by convolving the original data f (x) with smoothing fil-
ters W to produce a smoothed field fS(x):

fS(x) =
∫

dy f (y) W(y, x).

The smoothing filter could be any of a number of suitable filters:
it is usual, though neither necessary nor optimal, to choose filters
based on Gaussian functions. There are alternatives to this scal-
ing strategy: any form or pyramidal or wavelet transform will
have a similar effect.

In this paper we generate scaled representations of the data
by repeatedly smoothing the DTFE reconstructed density field
fDTFE with a hierarchy of spherically symmetric Gaussian fil-
ters WG having different widths R:

fS(x) =
∫

dy fDTFE(y) WG(y, x)

where WG denotes a Gaussian filter of width R:

WG(y, x) =
1

(2πR2)3/2
exp

(
−|y − x|2

2R2

)
· (1)

A pass of the smoothing filter attenuates structure on scales
smaller than the filter width.

The scale-space MMF analysis described in this study in-
volves a discrete number of N+1 levels, n = 0, . . . ,N. Following
Sato et al. (1998) we use a nested hierarchy of filters having
widths differing by a factor of

√
2:

Rn = (
√

2)n R0. (2)
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Fig. 2. Scale-space: a particle distribution (left) is translated by DTFE into a density field (centre), followed by the determination of the field, by
means of filtering, at a range of scales (righthand).

The base-scale R0 is taken to be equal to the pixel scale of the raw
DTFE density map. Sato et al. (1998) showed that using a ratio
of ≈
√

2 between discrete levels involves a deviation of a mere
4% with respect to the ideal case of a continuum of scale-space
levels1. As a retrospective on this research we would argue that,
in the context of cosmic structure, the factor of

√
2 is somewhat

too coarse.
The largest structure that survives this process is determined

by the effective width of the filter used in the final smoothing
stage. For our purposes it is sufficient to use n = 5.

We shall denote the nth level smoothed version of the DTFE
reconstructed field fDTFE by the symbol fn.

The Scale Space itself is constructed by stacking these var-
iously smoothed data sets, yielding the family Φ of smoothed
density maps fn:

Φ =
⋃

levels n

fn. (3)

A data point can be viewed at any of the scales where scaled
data has been generated. The crux of the concept is that the
neighbourhood of a given point will look different at each scale.
There are potentially many ways of making a comparison of the
scale dependence of local environment. We chose here to use
the Hessian Matrix of the local density distribution in each of
the smoothed replicas of the original data.

5.2. The Hessian

At each point of each dataset in the Scale Space view of the
data we can quantify the local “shape" of the density field in
the neighbourhood of that point by calculating, at each point the
eigenvalues of the Hessian Matrix of the data values.

We can express the local variations around a point x0 of the
density field f (x) as a Taylor expansion:

f (x0 + s) = f (x0) + sT∇ f (x0) +
1
2

sTH(x0)s + ... (4)

1 It is interesting to note also that Marr (1980) had already com-
mented on the importance of the

√
2 factor on psycho-visual grounds.

where

H =
 fxx fyx fzx

fxy fyy fzy
fxz fyz fzz

 (5)

is the Hessian matrix. Subscripts here denote partial derivatives
of f with respect to the named variable. There are many possible
algorithms for evaluating these derivatives.

In our case we compute the scale-space Hessian matrices for
each level n directly from the DTFE density field, via the convo-
lution

∂2

∂xi∂x j
fS(x) = fDTFE ⊗

∂2

∂xi∂x j
WG(RS)

=

∫
dy f (y)

(xi − yi)(x j − y j) − δi jR2
S

R4
S

WG(y, x) (6)

where x1, x2, x3 = x, y, z and δi j is the Kronecker delta. In other
words, the scale space representation of the Hessian matrix for
each level n is evaluated by means of a convolution with the
second derivatives of the Gaussian filter, also known as the Marr
(or, less appropriately, “Mexican Hat”) Wavelet.

In order to properly compare the values of the Hessian aris-
ing from the differently scaled variants of the data that make up
the Scale Space we must use a renormalised Hessian:

H̃ = R2
SH (7)

where RS is the filter width that has been used (
√

2nR0 for level
n in our case). Instead of using this “natural” renormalization,
it would be possible to use a scaling factor R2γ. Using values
γ > 1 will give a bias towards finding larger structures, while
values γ < 1 will give a bias towards finding smaller structures.

5.3. Eigenvalue and eigenvectors

The eigenvalues of the Hessian matrix evaluated at a point quan-
tify the rate of change of the field gradient in various directions
about each point (Fig. 3). The eigenvalues are coordinate inde-
pendent measures by the components of the second derivatives
of the field at each point x0. A small eigenvalue indicates a low
rate of change of the field values in the corresponding eigen-
direction, and vice versa.
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Fig. 3. Maps of the eigenvalues of the Hessian matrix at 3 different scales (levels). From top to bottom: the 3 eigenvalues λ1, λ2 and λ3 (λ1 > λ2 >
λ3). From left to right: 3 different scales R1 R3 and R5, (R1 > R2 > R5). Positive values are represented as gray shades in logarithmic scale while
negative values are indicated by contour lines also in logarithmic scale.

We denote these eigenvalues by λa(x) and arrange them so
that λ1 ≥ λ2 ≥ λ3:∣∣∣∣∣∣ ∂

2 fn(x)
∂xi∂x j

− λa(x) δi j

∣∣∣∣∣∣ = 0, a = 1, 2, 3

with λ1 > λ2 > λ3. (8)

The λi(x) are coordinate independent descriptors of the be-
haviour of the density field in the locality of the point x and
can be combined to create a variety of morphological indica-
tors. The criteria we used for identifying a local bloblike, fila-
mentary or sheetlike morphology are listed in Table 1. A simi-
lar philosophy was also followed by Colombi et al. (2000) and

Doré et al. (2007). The corresponding eigenvectors show the lo-
cal orientation of the morphology characteristics. Note, however,
that in this study we do not make use of the eigenvectors.

6. Scale-space feature detection and extraction

The eigenvalues of the Hessian therefore encode the local mor-
phology of the density field in terms of the curvature components
of the local density field in the direction of the corresponding
eigenvectors. Evaluating the eigenvalues and eigenvectors for
the renormalised Hessian H̃ of each dataset in a Scale Space
shows how the local morphology changes with scale (Fig. 3).
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Fig. 4. Morphology Mask E: on the basis of the 3 eigenvalues λ1, λ2 and λ3 at each location we determine whether the morphological criterion –
here whether it corresponds to a filament (Table 1) – is valid. If so E = 1, otherwise it is E = 0. Top row: maps of the three eigenvalues; bottom
row: the Morphology Mask E.

Table 1. Eigenvalue relationships defining the characteristic morpholo-
gies. The λ-conditions describe objects with intensity higher than their
local background as clusters, filaments or walls. For voids we would
have to reverse the sign of the eigenvalues.

Structure λ ratios λ constraints

Blob λ1 � λ2 � λ3 λ3 < 0; λ2 < 0; λ1 < 0

Filament λ1 � λ2 � λ3 λ3 < 0; λ2 < 0

Sheet λ1 � λ2 � λ3 λ3 < 0

With the local curvature and shape encapsulated in the three
eigenvalues λ1, λ2 and λ3 of the Hessian, the MMF seeks to iden-
tify the regions in space which correspond to a certain morphol-
ogy and at the scale at which the corresponding morphology
signal attains its optimal value. First we set out to select these
regions by means of a Morphology Mask. Subsequently we de-
velop a filter-based procedure for assigning at each scale a local
weight which is used to select the scale at which the morphology
reaches its strongest signal.

6.1. Morphology mask: E

Locally “spherical” topology is indicated by all three eigenval-
ues being similar in size, and locally “filamentary” topology is
indicated by having two similar eigenvalues and a negligible

third; the direction of the filamentary structure is then in the
direction of the eingenvector corresponding to the smallest (in-
significant) eigenvalue. A locally “sheet-like’ structure is charac-
terised by one dominant eigenvalue, its corresponding eigenvec-
tor indicating the normal to the sheet. The formal morphology
conditions are listed in Table 1.

There are many ways of using the eigenvalues of the
Hessians in the Scale Space representation of the data to iden-
tify and demarcate specific types of structure. Here we start by
defining a morphology mask. The Morphology Mask Emorph is
a hard filter which identifies all pixels obeying the morphology
and shape condition:

Emorph =

{
1 morphology constraint valid
0 morphology constraint invalid.

See Fig. 4 to see how this works.

6.2. Feature shape fidelity: S

The degree of “blobbiness”, “filamentariness” or “wallness” is
reflected in the degree to which the inequalities of Table 1 defin-
ing those structures are satisfied. We would be impressed by a
blob in which all three eigenvalues were equal – it would look
like a spherical lump. We would be less impressed if there was
a factor 3 between the eigenvalues since the blob would then
look more like a flattened sausage while not manifestly being a
filament or a wall.



324 M. A. Aragón-Calvo et al.: The multiscale morphology filter

Fig. 5. Morphology Filter T . The Morphology Response functionM (top centre) is the soft thresholded version of the Shape Significance map S
(left frame), determined from the values of the eigenvalues λ1, λ2 and λ3. The Morphology Intensity function I (bottom centre) is also computed
from the λ’s using Eq. (11). Finally, the Morphology Filter T (right frame) is obtained by combiningM with I.

The following shape indices reflect the strength S of the
classification in terms of the local geometry as characterised by
the λ’s.

Smorph =



|λ3|
|λ1| Blob

(
1 − |λ3|
|λ1|

)
· |λ3|
|λ2| Filament

(
1 − |λ3|
|λ1|

)
·
(
1 − |λ3|
|λ2|

)
Wall.

(9)

It is important to emphasise when using this equation that the
values of S are only meaningful if the relevant inequalities in
Table 1 are already satisfied.

As a cautionary warning it must be stressed that we cannot
identify a point as being part of a locally filamentary structure
and assess the significance by using an evaluation of S that ap-
plies to blobs or walls. Likewise the value of S cannot be used
to assess the relative significance of different types of structure.
This means that the identification of structural elements using
this eigenvalue classification scheme must be done cyclically:
first find blobs (three roughly equal eigenvalues), then lines (two
roughly equal and dominant eigenvalues) and finally walls (one
dominant eigenvalue). There are other schemes that are one-pass
classifiers.

We shall use the symbols Sblob, Sfilament, Swall to denote the
values of S computed for each kind of feature.

6.3. Morphology response filter:M

We shall need a filter that preferentially selects out points where
the value of the feature shape parameter S lies above some
threshold. With this we can tune the aggressiveness of feature-
selection. This can be done by defining a morphology mea-
sureM by

Mmorph = 1 − exp

(
−
Smorph

2β2

)
(10)

where morph = (blob, f ilament, or wall). The adjustable param-
eter β tunes the discrimination level of the morphology response
filter. A typical value is β = 0.5. Lower values will increase
the feature selectivity. Higher values will decrease the selectiv-
ity giving feature images with smooth features but contamina-
tion from other morphologies.

We shall use the symbolsMblob,Mfilament,Mwall to denote
the values ofM computed for each kind of feature.

Methods of thresholding image data such as Eq. (10) are
generally referred to as “soft thresholding”, as opposed to “hard
thresholding” in which all values below a critical value are ze-
roed. Soft thresholding results in visually more appealing den-
sity distributions. See Fig. 5.

6.4. Morphology intensity map I

Morphology Intensity is a property of structures that represents
how strong the feature is: a filament that is nice and narrow is in
some sense more filament-like than one which is rather wide and
diffuse. The discriminating factor in this case is the magnitude
of the eigenvalue λ2. Note that it would be inappropriate to nor-
malise or non-dimensionalize this relative to some local values
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Fig. 6. The Feature Map F (righthand frame) is computed for each scale and is equal to the Morphology Filter T at the locations where the
Morphology Mask E is unity (and nonzero).

such as the sum of the local λ’s: it is the fact of comparing the
λ values at different spatial locations that discriminates features.
If, in our example, the value of λ2 were roughly constant over
the data set, we would not be impressed by any filamentariness.

Qian et al. (2003) noted that the smallest eigenvalue (λ 3) will
be large only for blobs, while λ2 will be large for blobs and fil-
aments, and λ1 for blobs, filaments, and walls. Combining these
relations with the λ constraints in table 1 (3rd column) we can
use the following intensity function:

Imorph =



λ3 Blob

λ2 Filament

λ1 Wall.

(11)

The use of this morphology intensity function solves the prob-
lem of detecting low-intensity/noisy structures but it introduces
another problem: the range of values of Imorph is not well defined
within a given interval since it depends on the nature of the den-
sity field itself. We therefore normalise its values in the interval
[0, 1] in order to apply it in a consistent way.

There are other posible measures of feature intensity. Frangi

et al. (1998) introduced the Frobenius matrix
√
λ2

1 + λ
2
2 + λ

2
3 as

a measure of second-order structure. However, this measure is
biased towards blob-like structures and can produce erroneous
signals in the detection of filaments and walls.

6.5. Morphology filter T

For each level of the scale space, we can generate a
Morphology Filter, T , from the Morphology Intensity Map I

and Morphology Response Filter M. Formally we can write
this as

T = I ⊗M (12)

where the combination operator ⊗ simply means that every pixel
of the Morphology Intensity Map, I, is multiplied by the value
of the corresponding pixel in the Morphology Response Filter
M. As described above, these hold information on different as-
pects of the structural morphology, and by combining them we
can hope to improve on the results that would be obtained by
using either of them alone. Thus the Morphology Filter has its
most significant values at those places where the morphology is
close to what we are looking for.

6.6. Feature map F

This is where, for each level of scale space, we combine infor-
mation contained in the morphology mask E and filter T : we
select out those regions of T where the morphology constraint
is valid.

For each level of the scale space, we can generate a Feature
Map, F . The feature map comprises the information contained
in the Morphology Filter T and allocates it to the locations con-
tained in the Morphology Mask E. Formally we can write this as

F = E ⊗ T (13)

where the combination operator ⊗ simply means that every pixel
of the Morphology Filter, T , is modulated by the mask value E,
1 or 0 dependent on whether the morphology constraint is valid
at the corresponding location. See Fig. 6.
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Fig. 7. The Scale Space Map Stack Ψ: the formalism selects at any location the scale with the optimal signal of the feature map. Depicted are the
Feature maps F for three different scales (top row), and the resulting Map Stack Ψ (bottom row), determined over the full range of scales.

6.7. Scale space map stack Ψ

Each level of the scale space has its Feature Map constructed
according to Eq. (13). They must now be combined in order to
produce the definitive scale independent map of features, Ψ. We
can refer to Ψ as the “feature stack” and formally write it as

Ψ =
⊎

levels n

Fn (14)

where the combination operator
⊎

represents a new Feature Map
built by combining the individual Feature Maps, F n, of the scale
space. Each pixel of Ψ takes on the maximum value of the cor-
responding pixel values in the stack of Feature Maps F n in the
Scale Space. We can write this (for a 3D map) as

Ψ(i, j, k) = max
Levels n

Fn(i, j, k) (15)

where i, j, k represent the location of the pixels in the map. In
this way we assign each point of the dataset a value quantifying
the degree to which it can be said to be a part of some feature
(blob, filament, or wall) on any of the scales investigated by the
scale space. See Fig. 7.

6.8. Assigning points to features

The Scale Space Map Stack Ψ has to be thresholded in order to
identify the most significant features. This will be discussed in
detail in Sect. 7. It is at this point that we see astronomical input
by requiring that the sought-after structure correspond to some
structure that we would recognise.

Given the Scale Space Map Stack Ψ for a given feature
(blobs, filaments or walls), we can assign each particle of the

original dataset to the specific feature identified in the Scale
Space Map Stack.

7. Cosmological feature detection:
threshold definition

7.1. Texture noise

The final stage of each cycle of the analysis is the thresholding
of the scale space map stack in order to identify individual ob-
jects that are being sought in that cycle. Without the thresholding
the maps are noisy and over-structured: we can refer to this as
as “texture noise”. This texture noise is simplest removed by ap-
plying a simple threshold to the processed maps. There is a po-
tential problem in applying a simple threshold: it is necessary to
determine a threshold that removes texture noise (however that
is determined) while leaving the sought-after features intact.

7.2. Object erosion threshold

We set the thresholds for each feature to the value such that rais-
ing the threshold higher would start eroding objects and decrease
their number. In other words, the threshold value is set so that the
object count is maximised while at the same time texture noise
is eliminated.

7.3. Identifying blobs

We use τB to denote the value of Ψ above which a pixel is con-
sidered as part of a blob. Figure 8a plots the number of objects
detected above each value of the threshold, τB.
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For blob finding the thresholding is quite straightforward. At
very low threshold, there will be many round objects (the eigen-
value criterion fixes their shape) of which only a small fraction
will be the blobs we are seeking. As the threshold is raised from
zero, the noise and the the less significant blobs are eliminated.
There comes a point when the threshold stops annihilating these
small, less significant, blobs and simply starts eroding the large
blobs. This is the point where we define out optimal threshold.
The dotted vertical line indicates the best value of τB.

If we plot a graph of the fraction of the sample volume oc-
cupied by below-threshold blobs against the threshold we obvi-
ously find a monotonic curve that rises from zero to one. This is
shown in Fig. 8a where we see a two power-law behaviour with
a break marking where the transition from texture noise annihi-
lation to simple blob erosion takes place.

7.4. Identifying filaments and walls

For filament and wall finding we again choose to threshold the
distributions, but this time we decide on the optimal value of the
threshold on the basis of the population curve of features defined
at each threshold value.

7.4.1. Filaments

We use τF to denote the value ofΨ above which a pixel is consid-
ered as part of a filament. Figure 8b plots the normalised number
of objects detected for each value of the threshold, τF.

The explanation for the shape of this curve is as follows.
The low threshold (small-τF) objects are largely due to texture
noise: the number of these declines as the threshold increases.
When real filamentary features appear the number of detec-
tions increases with τF to reach a maximum. This is because
at lower thresholds the features tend to percolate, so that raising
the threshold breaks the structure up into a greater number of fil-
amentary objects. As the threshold rises further the filaments are
eroded and get rarer. The point at which filament erosion starts
to act is taken as the optimal value of τF. This is indicated by the
dotted line in the figure.

7.4.2. Walls

We use τW to denote the value of Ψ above which a pixel is con-
sidered as part of a wall. Figure 8c plots the normalised number
of objects detected for each value of the threshold, τW.

The threshold for defining walls is determined in the same
way as for filaments. Note, however, that the particles classified
as lying in blobs and filaments have been removed in previous
cycles of the analysis so there is no longer a significant texture
noise component. As the threshold is varied there is a peak in
the number of walls that are found. At thresholds below this crit-
ical value the walls join up and percolate, eventually leaving one
vast percolating structure. At higher threshold values walls are
eroded and eventually destroyed. The dotted vertical line indi-
cates the best value of τW.

7.5. Pseudo-code

We have described the process of constructing a Feature Map
and identifying features in that map. However there is a compli-
cation that arises in practise because both the Intensity Map and
the Morphology Filter are built on a hierarchy of λ values. In the
case of the Morphology Filter, the different λ’s come in through

(a) Threshold determination for blobs.

(b) Threshold determination for filaments.

(c) Threshold determination for walls.

Fig. 8. Thresholds for feature isolation based on the feature erosion cri-
terion. The selected value is shown as a dotted vertical line. The object
count to the right of the line declines due to erosion.

Eqs. (9) and (10). In the case of the Intensity Map, different λ’s
define the strength of different features as described in Eq. (11).
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The analysis cycle can be expressed in pseudo-code (see ac-
companying code in next column). In this form of pseudo-code,
keywords (which correspond to class methods in object oriented
programming) are in boldface.

The nature of the hierarchy is such that we have first to iden-
tify blobs, remove them from the sample, then identify filaments,
and after removing them from the sample finally identify the
walls. This arises because data points in blobs are defined by
having three significant eigenvalues, data points in filaments are
defined by having two significant eigenvalues, and data points
in walls have only one significant eigenvalue. Identifying a fil-
ament before eliminating blobs would not work since the blobs
would be more strongly detected.

8. Areas of further development

The methodology we have presented is very simple, yet, as we
shall see, it is highly effective in differentiating the three main
structural features that make up the cosmic web. The follow-
ing section will test the methodology against a sample with con-
trolled clustering: the Voronoi model, and present results for an
N-Body simulation. Before going on to that analysis it is worth
making a few remarks about some details of our procedure that
might be enhanced.

Code 1: Pseudocode MMF procedure.

get PointSet
set Feature = Blobs

: Map_Feature

resample PointSet to Mesh using DTFE
construct ScaleSpace Hierarchy

for each Level in ScaleSpace
{
build Hessian Eigenvalue Maps

build using Eigenvalue Criteria for Feature
{
Morphology Mask, E
Feature Shape Fidelity, S
Morphology Response Filter, M(S)
Feature Intensity Map, I
}

generate
{
Morphology Filter, T = I ⊗ M
Feature Map, F = E ⊗ T
}

}

stack ScaleSpace Feature Maps, Ψ =
⊎
F

threshold Feature Maps using Feature Threshold Method

in thresholded regions
{
identify Points
publish Points
remove Points from PointSet
}

if Feature = Blobs
set Feature = Filaments

else if Feature = Filaments
set Feature = Walls

else
quit

goto Map_Feature

Our use of isotropic Gaussian filters is perhaps the most im-
portant limiting factor in this analysis. The largest filter radius

which is chosen is substantially smaller than the lengths of the
typical filaments. Only the shorter filaments will get isotropised
and they are “lost” since they make no contribution in the
scalespace stack. Our algorithm is indeed a long thin filament
finder. The main side-effect of the Gaussian smoothing is to
make the profile (perpendicular to the filament) of the sharper
(narrow) filaments Gaussian. A narrow filament having high
density contrast will, under linear Gaussian smoothing, spill over
into the large scales at a variety of thresholds and it will appear
to be fatter than it really is. This latter problem is a consequence
of applying simple linear filters: it is generally overcome within
the scale space context by using nonlinear filters or by using
wavelets (Martínez et al. 2005; Saar et al. 2007)

Another area for improvement is to use the eigenvectors as
well as the eigenvalues themselves. Here we have simply re-
lied on the relative magnitudes of the eigenvalues as indicators
of curvature morphology. Had the eigenvectors themselves been
uncorrelated we might have concluded that there was structure
when in fact there was only noise: the eigenvector correlations
are good indicators of noise.

A third area for improvement would be to use anisotropic
smoothing filters. This leads us into another related approach
to this problem: the use of nonlinear diffusion equations to lo-
cate structural features. This will be the subject of another article
later on.

9. Voronoi clustering models

To test and calibrate the Multiscale Morphology Filter we have
applied the MMF to a set of four Voronoi Element Models. These
models combine the spatial intricacies of the cosmic web with
the virtues of a model that has a priori known properties. They
are particularly suited for studying systematic properties of spa-
tial galaxy distributions confined to one or more structural ele-
ments of nontrivial geometric spatial patterns. The Voronoi mod-
els offer flexible templates for cellular patterns, and they are easy
to tune towards a particular spatial cellular morphology. In the
case of the Voronoi models we have exact quantitative informa-
tion on the location, geometry and identity of the spatial com-
ponents against which we compare the outcome of the MMF
analysis.

9.1. Voronoi models

Voronoi Clustering Models are a class of heuristic models for
cellular distributions of matter van de Weygaert (1991, 2002).
They use the Voronoi tessellation as the skeleton of the cos-
mic matter distribution, identifying the structural frame around
which matter will gradually assemble during the emergence of
cosmic structure (Voronoi 1908; Okabe et al. 2000). The interior
of Voronoi cells corresponds to voids and the Voronoi planes
with sheets of galaxies. The edges delineating the rim of each
wall are identified with the filaments in the galaxy distribution.
What is usually denoted as a flattened “supercluster” will com-
prise an assembly of various connecting walls in the Voronoi
foam, as elongated “superclusters” of “filaments” will usually
consist of a few coupled edges. The most outstanding structural
elements are the vertices, corresponding to the very dense com-
pact nodes within the cosmic web, rich clusters of galaxies.

A more detailed description of the model construction may
be found in Appendix B.1. We distinguish two different yet com-
plementary approaches, Voronoi Element Models and kinematic
Voronoi models.
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Table 2. Voronoi Clustering Models. Percentage of galaxies/points in
the various morphological elements of the model.

Model % Blob % Filament % Wall % Field
A 40 30 25 5
B 43 17 32 8
C 23 37 33 7
D 27 23 42 8

Simple Voronoi models confine their galaxy distributions
to one of the distinct structural components of a Voronoi
tessellation:

• Field. Particles located in the interior of Voronoi cells (and
thus randomly distributed across the entire model box).
• Wall. Particles within and around the Voronoi walls.
• Filament. Particles within and around the Voronoi edges.
• Blobs. Particles within and around the Voronoi vertices.

Starting from a random initial distribution of N points, these
galaxies are projected onto the relevant wall, edge or vertex of
the Voronoi cell in whose interior they are initially located.

For our study we generated four different Voronoi cluster-
ing models, labelled as A, B, C and D. They are all based upon
a Voronoi tessellation generated by M = 53 nuclei distributed
within a box of size L = 100 h−1 Mpc. The models are compos-
ite Voronoi Element Models and consist of the superposition of
galaxies located in field, walls, edges and vertices of a Voronoi
tessellation. Our four test models contain N = 323 galaxies. The
fraction of galaxies in the various components is a key parame-
ter of the model, and is specified in Table 2. In and around the
walls, edges and vertices the galaxy distribution follows a radial
Gaussian density profile, with scale factors σW = 1.0 h−1 Mpc,
σF = 1.0 h−1 Mpc and σB = 0.5 h−1 Mpc.

9.2. MMF processing

A considerable virtue of the Voronoi clustering models is that it
is a priori known which galaxies reside in the various morpho-
logical components of the Voronoi test models. This allows an
evaluation of the absolute performance of the MMF and other
morphology detection techniques by determining the fraction of
the galaxies which are correctly identified as vertex, filament and
wall galaxy.

For each Voronoi model we computed the DTFE den-
sity field from the particle distribution and applied the MMF.
Following our previously described scheme, we first identified
the blobs from the complete particle distribution. After removal
of the blob particles, the filaments are found. Following the
equivalent process for the filaments, the last step of the MMF
procedure concerns the identification of the wall particles. The
remaining particles are tagged as field particles.

Figure 9 shows the outcome of the MMF applied to Voronoi
Model C. Visually, the resemblance between real and MMF
identified blob, filament and wall particles is remarkably good.
The second row of panels shows the real detections of MMF:
MMF clearly manages to identify all clusters, filaments and
even the more tenuous walls in the weblike galaxy distribution.
The false detections do appear to have a somewhat broader spa-
tial distribution than those of the corresponding real detections.
Most of them reside in the boundary regions of the blobs, fila-
ments and walls: they are mainly an artefact due to the fact that
the effective extent of the MMF morphology masks is slightly
larger than the intrinsic extent of the Voronoi components.

Fine-tuning of the filter scales (Eq. (1)) is a potential solution
for curing this artefact.

9.3. Detection rate and contamination

The detection rate of blob, filament and walls galaxies is deter-
mined and defined as follows. The galaxies in an MMF blob,
filament or wall Map Stack Ψ which are genuine Voronoi clus-
ter, filament or wall galaxies are tagged as real detections. A
galaxy detected by one of the three map stacks Ψb, Ψf or Ψw
intrinsically belonging to another morphological component is
considered a false detection. For instance, a filament galaxy de-
tected by Ψb is a false blob galaxy.

The main tunable parameters for optimizing the number of
detected galaxies are blob, filament and wall threshold values,
τb, τf and τw. By lowering the blob threshold level τb, defined
through a regular density threshold (see Sect. 7), the number of
MMF detected blob galaxies increases. The same holds for ad-
justing the filament and wall thresholds, in terms of the lowering
of the Ψf and Ψw levels. The galaxies detected by MMF include
both real and false detections. As the threshold levels are ad-
justed the number of both will tend to increase.

The detection rate at a given threshold level is the fraction of
genuine blob, filament or wall galaxies which have been detected
by the MMF. Ideally one would want to trace them all and have
a 100% detection rate, in practice this is set by the the applied
threshold. Based upon the 1–1 relation between τb, τf and τw
on the one hand and the corresponding blob, filament and wall
detection rate on the other we use the detection rate as threshold
parameter.

The ratio of the corresponding number of false blob galaxies
to the total number of genuine blob galaxies is the blob con-
tamination rate rate. The filament and wall contamination rate
are defined in a similar way. Because a lowering of the thresh-
old levels will result in a larger number of detections, both real
and false, the contamination rate will be an increasing function
of the detection rate. Note that the contamination rate may ex-
ceed 100% in the case the number of false detections exceeds
that of the total number of genuine (blob, filament or wall)
galaxies.

9.4. Comparison

We compare the MMF segmentation of the Voronoi models in
blobs, filaments and walls with that achieved by a more direct
criterion, that of a straightforward density threshold on the DTFE
density field. We assign the label “DTC" to this naive procedure.

Each of the morphological elements are identified with a par-
ticular (disjunct) range of density values. Blobs, ie. clusters, are
identified with the highest density values. Filaments are asso-
ciated with more moderately high density values. Walls follow
with density values hovering around unity to a few, while the
field/voids may include densities down to a zero value. This ap-
proach has frequently been used to discriminate between viri-
alized haloes and the surrounding matter distribution, and has
even been used in an attempt to define filamentary or planar
features (Dolag et al. 2006). However, it seriously oversimpli-
fies and distorts the perceived structure of the cosmic web. (This
is presumably because filaments and walls differ in density and
have significant internal density structure. The simplistic den-
sity threshold approach does not reflect the reality of the struc-
ture: the range of densities in filaments overlaps with densities
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Fig. 9. Recovered particles in Blobs, Filaments and Walls from a voronoi particle distribution. Particles inside blobs are detected (left), at 90/15
percent real/false detections. From the new blob-free distribution we detect particles in filaments (center) at 90/10 percent real/false detections.
Finally the blob-filament-free distribution is used to find the particles inside walls (right) at 80/10 percent real/false detections.

in walls and even with those of the outskirts of clusters. (Hahn
et al. 2007) reach similar conclusions.

9.5. Test results

Figure 10 compares the contamination rate as a function of the
detection rate for the four different Voronoi models. The A, B,
C and D models are distinguished by means of line style. The
black lines relate to the MMF detections, the grey lines show the
results of the equivalent DTC procedure. We find the following:

• For all models, and for all morphologies, the MMF proce-
dure is clearly superior to the DTC detections in suffering
significantly lower contamination rates.
• The MMF contamination is least for the blob detections. The

filament contamination is lower than the wall contamination
for models with many intrinsic filament galaxies (A and C).

For models B and D, containing more wall galaxies, the situ-
ation is the reverse. The same holds true for the DTC detec-
tions, be it much more pronounced and less favorable wrt.
the MMF detections.
• The MMF and DTC blob contamination rate is more favor-

able for the A and B models. Both models contain a relatively
high fraction of blob galaxies.
• The DTC blob contaminations are surprisingly bad, given

that clusters are compact objects of high density with sharply
defined boundaries.
• The filament contamination rate is worse for models B

and D, both marked by a relatively low amount of intrinsic
filament galaxies. This is true for both DTC and MMF.
• The DTC contamination is extremely bad for models B and

D, quickly exceeding 100%. This reflects the huge overlap in
density range of filaments and other morphologies resulting
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Fig. 10. Reals versus false detections for different voronoi models (see Table 2) (A: solid, B: dotted, C: dashed, D: dotted-dashed) for blobs (left),
filaments (center) and walls (right). We applied the MMF (black) and simple density thresholding (grey) in order to compare both methods.

in a systematic inclusion of particles belonging to other mor-
phologies.
• For the MMF procedure there is a clear correlation between

the intrinsic wall galaxy fraction and the contamination rate:
model D has the highest number of wall galaxies and the
lowest contamination. This is not true for DTC.

In summary, we find that MMF clearly performs much better in
tracing blob, filament and wall galaxies than a pure threshold cri-
terion would allow. By comparing Voronoi models A, B, C and
D we find that MMF performs better for components which are
relatively more prominent. Because of the mixture in densities
between blobs, filaments and walls this is not necessarily true
when using a simple density criterion. The latter involves often
excessive levels of contamination between galaxies in different
morphological entities. If anything, this is perhaps the strongest
argument for the use of the shape and morphology criteria en-
closed in the MMF.

10. N-body simulations

The Large Scale Structure of the universe contains an intrincate
mixture of morphologies. The boundaries separating each mor-
phological component is rather ill-defined: clusters of galaxies
are interconnected by filaments which in turn define the edges
of walls.

In order to explore the response of the MMF in this complex
scenario we performed a cosmological N-body simulation. We
give here only a few preliminary results to illustrate how the
methodology works with a “real” galaxy distribution. A more
detailed exploratin follows in a later paper.

The simulation represents a LCDM model with ΩΛ = 0.7,
Ωm = 0.3, h = 0.73 in a periodic box of side 150 Mpc con-
taining 2563 dark matter particles. We also run the same sim-
ulation lowering the resolution to 1283 particles according to
the prescription given by Klypin et al. (2001) in order to as-
sess the effect of mass resolution in the density field determina-
tion. For the scales studied here there is no significant difference
between the density fields computed from the two simulations
since the mean interparticle separation is small enough to re-
solve the intermediate-density structures (Schaap 2007).

10.1. Results

Figure 11 shows the result of applying the MMF to this sim-
ulation. The multiscale nature of the MMF is clearly seen in
Fig. 11c which shows blobs of different sizes containing simi-
lar sized clusters of points (Fig. 11g).

In the case of filaments and walls (see Figs. 11e and f) the
multiscale nature of the MMF is less obvious, however it is
nonetheless there.

It is clear from Fig. 11 that even though the LSS presents
a great challenge it can succesfully recover each morphological
component at its characteristic scale.

10.2. Blobs and clusters

Figure 12A shows a section through the N-body model and
Fig. 12B shows the blobs that are found in that section by the
MMF process. Figure 12C shows how these blobs relate to the
underlying structure displayed in panel A.

In an attempt to see how these blobs compare with clus-
ters that would be identified via a more traditional method, we
have use the HOP algorithm to find clusters. The HOP clus-
ters are shown in Fig. 12D superposed on the MMF blobs.
Superficially, we see that the agreement is remarkably good: the
MMF blobs are indeed what we would subjectively call clus-
ters. As in Fig. 11 we can appreciate the scale range revealed
by MMF.

Making this comparison more precise is rather difficult ow-
ing to the vastly different approaches to blob-finding. This will
be discussed in detail in a subsequent paper dealing specifically
with the application of MMF to N-body simulations.

10.2.1. Filaments

In Fig. 13 we show the particles that belong to the filaments de-
fined at various scales of the scale space. The top left panel of
Fig. 13 shows a histogram of the number of particles contained
in the filaments seen at smoothing scales from 1−4 h−1 Mpc. As
expected the number of particles rises rapidly with smoothing
scale (the filaments are fatter on larger scales and so encompass
greater volume). The other three panels show the points con-
tained in filaments, seen in a slice of the N-body simulation at
different resolutions.
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Fig. 11. MMF applied to N-body simulation. The top row shows a subsample a) consisting of 10% of the total number of particles together with,
in panels b) and c), the structures resulting from simple density thresholding using two different thresholds. Panels b) and c) both contain both
spherical and elongated structures: there is a large amount of cross contamination between morphologies. Simple density thresholding is not an
effective morphological discriminator. The second row shows the results of applying the MMF procedure showing clearly segregated a) blobs,
b) filaments and c) walls (for clarity we display only the largest structures. The third row shows the particles associated with the MMF defined
structures.

When these are stacked, application of Eq. (15) determines
whether a given pixel is a part of a filament. The process yields
the filamentary map of Fig. 11.

10.3. Inventory of structures

Finally we can simply count up the mass fraction of the model
in various structural entities and the volume occupied by such

structures to see how much of this N-body Universe lies in which
structures. The result is shown in the pie diagrams of Fig. 14.

The result is hardly surprising: the clusters and filaments oc-
cupy about the same mass fraction and together contain more
than half the haloes in the simulation. The clusters occupy by far
the least volume – they are dense systems and they are denser
than the filaments. Recall, however, the important remark that
we could not use density threshold alone to define these struc-
tures (see the top row of panels in Fig. 11).
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Fig. 12. Comparing blobs found from HOP and from MMF. A): Particles. B) Isosurfaces of the blob identiffied with MMF. C) Particles inside the
blobs (black) and background particles in grey. D) The position of the HOP Haloes (circles) and the particles inside the MMF blobs (dark grey).
Light grey particles are just the rest.

The large volume occupancy of filamentary structures ex-
plains why our impression of the cosmic matter distribution is
predominantly filamentary, and the fact that they are all long and
thin (as illustrated in Fig. 13) emphasises the web-like nature of
the structure.

Perhaps the only surprise in this analysis is the relatively low
volume occupancy of the walls in comparison with the filaments.
This may be in part because most of the walls have broken up by
the present epoch. It may also be in part due to the fact that the
low number of particles in walls makes it relatively difficult to
find them: they may get mis-classified as being part of the gen-
eral field. It is difficult to assess this on the basis of the present
experiments alone.

11. Conclusions and comments

MMF, our simple embodiment of Hessian-based scale space
analysis of large scale cosmic structure, is remarkably sucessful
in delineating the different structures that make up the cosmic

web. Since the morphology filters give us a direct measurement
of blobness, filamentariness or wallness they can be used to char-
acterize and quantify, in a systematic way, the large scale matter
distribution. The technique has been tested using N-Body and
Voronoi models.

11.1. Void finding

It should be emphaised that MMF is not a void finder except in-
sofar as anything that is not in a blob, filament of wall might be
deemed to be in a void region. In that case MMF would be a
suitable tool for finding so-called “void galaxies” without being
able to identify the host void. Void finding per se is almost cer-
tainly best achieved via the Watershed (WVF) method (Platen
et al. 2007).
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Fig. 13. Particles defining filamentary structures in a slice of an N-body model. The grayscale images show the MMF detection of filamentary
features on various filtering scales. Top lefthand: the filament volume occupancy (number of sample grid cells with a filament signal) as a function
of smoothing scale.

11.2. Enhancements

There are many areas where the MMF treatment could be en-
hanced and some of these will be presented in future papers. We
summarize a few issues here in order to place the present work
in a more general perspective.

• The definition of the intensity component of the morphology
filter could be improved by including other local propeties
such as gradient, direction of eigenvectors, connectivity, etc.
• The Gaussian kernel is not the only possibility for producing

the scale-space representation: alternative kernels may im-
prove the performance of the MMF. One side effect of using
a simple Gaussian filter is that high peaks in high density fil-
aments are detected always at larger scales even when their
density profile is relatively narrow (the “filter smearing” we
referred to earlier).

• Our implementation of the Multiscale Morphology Filters
is grid-based and that required a resampling of the original
point distribution data. It is possible to derive a similar set
of filters using particle-based measures for the local distribu-
tion of matter (e.g.: inertia tensor analysis), defining window
functions and scale normalizations in a multiscale context.

With respect to the above we would also like to refer to Sect. 8.

11.3. Applications

The ability to accurately identify arbitrarily shaped structures al-
lows the possibility of seeking correlations within the structures
that might otherwise be masked by other methods. Already, the
method has been used to identify previously unknown systemic
properties in the alignment of haloes with the parent structures
(Aragón-Calvo et al. 2007).
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(a) Volume occupied by each of the
structural features.

(b) Fraction of the mass occupancing
each of the structural features.

Fig. 14. Occupancy of Cosmic Web features, by volume (top) and mass
(bottom) for a ΛCDM N-body simulation (see text).

The technique has been illustrated in terms of spatial point
data since that is relatively unambiguous. However, the MMF
technique we have described is a quite general technique for
scale-free feature finding: it only needs a mathematical prescrip-
tion of what is being looked for, which in general may not be
so easy! Bearing that in mind, the following is a list of possible
application areas.

The technique can readily be extended to analysis of veloc-
ity data of various kinds such as Fingers Of God in cosmolog-
ical redshift surveys, analysis of dynamical phase spaces, fea-
ture detection in solar images, morphological characterization of
structure in spiral arms, feature detection in radio datacubes, etc.
Finding clusters and their substructures using MMF would pro-
vide an important alternative to HOP. Finding small, low surface
brightness, galaxies in noisy neutral hydrogen surveys would be
another useful application.
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Appendix A: The DTFE general reconstruction
procedure

For a detailed specification of the DTFE density field procedure
we refer to Schaap (2007). In summary, the DTFE procedure for

density field reconstruction from a discrete set of points consists
of the following steps:

• Point sample. Given that the point sample is supposed to
represent an unbiased reflection of the underlying density
field, it needs to be a general Poisson process of the (sup-
posed) underlying density field.

• Boundary conditions. The boundary conditions will deter-
mine the Delaunay and Voronoi cells that overlap the bound-
ary of the sample volume. Dependent on the sample at hand,
a variety of options exists:
+ Empty boundary conditions:

outside the sample volume there are no points.
+ Periodic boundary conditions:

the point sample is supposed to be repeated periodically
in boundary boxes, defining a toroidal topology for the
sample volume.

+ Buffered boundary conditions:
the sample volume box is surrounded by a bufferzone
filled with a synthetic point sample.

• Delaunay tessellation. Construction of the Delaunay tes-
sellation from the point sample. While we also still use
the Voronoi-Delaunay code of van de Weygaert (1991) and
van de Weygaert (1994), at present there is a number of ef-
ficient library routines available. Particularly noteworthy is
the CGAL initiative, a large library of computational geome-
try routines2.

• Field values point sample. The estimate of the density at
each sample point is the normalized inverse of the volume
of its contiguous Voronoi cell W i of each point i. The
contiguous Voronoi cell of a point i is the union of all
Delaunay tetrahedra of which point i forms one of the four
vertices. We recognize two applicable situations:

– uniform sampling process:
the point sample is an unbiased sample of the underlying
density field. Typical example is that of N-body simulation
particles. For D-dimensional space the density estimate is,

ρ̂(xi) = (1 + D)
wi

V(Wi)
, (A.1)

with wi the weight of sample point i, usually we assume the
same “mass” for each point.

– systematic non-uniform sampling process:
sampling density according to specified selection process.
The non-uniform sampling process is quantified by an a
priori known selection function ψ(x). This situation is typ-
ical for galaxy surveys, ψ(x) may encapsulate differences
in sampling density ψ(α, δ) as function of sky position
(α, δ), as well as the radial redshift selection function ψ(r)
for magnitude- or flux-limited surveys. For D-dimensional
space the density estimate is,

ρ̂(xi) = (1 + D)
wi

ψ(xi) V(Wi)
· (A.2)

• Field gradient
Calculation of the field gradient estimate ∇̂ f |m in each

2 CGAL is a C++ library of algorithms and data structures for
Computational Geometry, see www.cgal.org
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D-dimensional Delaunay simplex m (D = 3: tetrahedron;
D = 2: triangle) by solving the set of linear equations for the
field values fi at the positions ri of the (D + 1) tetrahedron
vertices,

∇̂ f |m ⇐=


f0 f1 f2 f3

r0 r1 r2 r3.
(A.3)

Evidently, linear interpolation for a field f is only meaning-
ful when the field does not fluctuate strongly.

• Interpolation. The final basic step of the DTFE procedure
is the field interpolation. The processing and postprocessing
steps involve numerous interpolation calculations, for each
of the involved locations x. Given a location x, the Delaunay
tetrahedron m in which it is embedded is determined. On the
basis of the field gradient ∇̂ f |m the field value is computed
by (linear) interpolation,

f̂ (x) = f̂ (xi) + ∇̂ f
∣∣∣
m
· (x − xi). (A.4)

In principle, higher-order interpolation procedures are also
possible. Two relevant procedures are:

– Spline Interpolation
– Natural Neighbour Interpolation.

For NN-interpolation see Watson (1992); Braun &
Sambridge (1995); Sukumar (1998) and Okabe et al.
(2000). Implementation of Natural neighbour interpolations
is presently in progress.

• Processing. Though basically of the same character, for
practical purposes we make a distinction between straight-
forward processing steps concerning the production of im-
ages and simple smoothing filtering operations and more
complex postprocessing. The latter are treated in the next
item. Basic to the processing steps is the determination of
field values following the interpolation procedure(s) outlined
above. Straightforward “first line” field operations are Image
reconstruction and Smoothing/Filtering.

+ Image reconstruction.
For a set of image points, usually grid points, determine
the image value. formally the average field value within
the corresponding gridcell. In practice a few different
strategies may be followed

– Formal geometric approach
– Monte Carlo approach
– Singular interpolation approach.

The choice of strategy is mainly dictated by accuracy
requirements. For WVF we use the Monte Carlo ap-
proach in which the grid density value is the average of
the DTFE field values at a number of randomly sampled
points within the grid cell.

+ Smoothing and Filtering.
A range of filtering operations is conceivable. Two of
relevance to WVF are:

– Linear filtering of the field f̂
Convolution of the field f̂ with a filter
function Ws(x, y), usually user-specified,

fs(x) =
∫

f̂ (x′) Ws(x′, y) dx′. (A.5)

– Natural Neighbour Rank-Ordered filtering
(Platen et al. 2007).

• Post-processing. The real potential of DTFE fields may be
found in sophisticated applications, tuned towards uncover-
ing characteristics of the reconstructed fields. An important
aspect of this involves the analysis of structures in the den-
sity field. The WVF formalism developed in this study is an
obvious example.

Appendix B: Voronoi clustering models

Voronoi Clustering Models are a class of heuristic models for
cellular distributions of matter (van de Weygaert 1991, 2007).
They use the Voronoi tessellation as the skeleton of the cos-
mic matter distribution, identifying the structural frame around
which matter will gradually assemble during the emergence of
cosmic structure. The interior of Voronoi cells correspond to
voids and the Voronoi planes with sheets of galaxies. The edges
delineating the rim of each wall are identified with the filaments
in the galaxy distribution. What is usually denoted as a flattened
“supercluster” will comprise an assembly of various connecting
walls in the Voronoi foam, as elongated “superclusters” of “fil-
aments” will usually consist of a few coupled edges. The most
outstanding structural elements are the vertices, corresponding
to the very dense compact nodes within the cosmic web, rich
clusters of galaxies.

We distinguish two different yet complementary approaches
(see van de Weygaert 2007). One is the fully heuristic ap-
proach of “Voronoi Element models”. They are particularly apt
for studying systematic properties of spatial galaxy distributions
confined to one or more structural elements of nontrivial geomet-
ric spatial patterns. The second, supplementary, approach is that
of the Voronoi Evolution models or Voronoi Kinematic models,
which attempt to “simulate” weblike galaxy distributions on the
basis of simplified models of the evolution of the Megaparsec
scale distribution. The Voronoi clustering models offer flexible
templates for cellular patterns, and they are easy to tune towards
a particular spatial cellular morphology. To investigate the per-
formance of MMF we use composite Voronoi Element Models,
tailor-made heuristic “galaxy” distributions composed of a su-
perposition of particle distributions in and around the walls,
edges and vertices of the Voronoi skeleton. A complete compos-
ite particle distribution includes particles located in four distinct
structural components:

• Field
Particles located in the interior of Voronoi cells (and thus
randomly distributed across the entire model box)
• Wall

Particles within and around the Voronoi walls.
• Filament

Particles within and around the Voronoi edges.
• Blobs

Particles within and around the Voronoi vertices.

For each of these four distinct distributions the model galax-
ies are projected onto the relevant Voronoi wall, Voronoi edge
or Voronoi vertex or retained within the interior of the Voronoi
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Fig. A.1. Three different patterns of Voronoi element galaxy distributions, shown in a 3D cubic setting. The depicted spatial distributions corre-
spond to a wall-dominated Voronoi Universe (top), a filamentary Voronoi Universe (centre) and a cluster-dominated Voronoi Universe (bottom).

cell in which they are located. Characteristic examples of sim-
ple Voronoi Element galaxy distributions are the ones shown in
the boxes in Fig. A.1. The depicted distributions concern a wall-
dominated Voronoi Universe (lefthand), a filamentary Voronoi
Universe (centre) and a cluster-dominated Voronoi Universe
(righthand).

In the case of composite models the fraction of field galaxies
Xc, wall galaxies Xw, filaments galaxies Xf and blob galaxies
Xb, with the constraint Xc + Xw + Xf + Xb = 100, is a key input
parameter of the model.

B.1. Initial conditions

The initial conditions for the Voronoi galaxy distribution are:

• Distribution of M nuclei, expansion centres, within the sim-
ulation volume V. The location of nucleus m is ym.
• Generate N model galaxies whose initial locations, xn0 (n =

1, . . . ,N), are randomly distributed throughout the sample
volume V.
• Of each model galaxy n determine the Voronoi cell Vα in

which it is located, ie. determine the closest nucleus jα.

All different Voronoi models are based upon the displacement
of a sample of N “model galaxies”. The initial spatial distribu-
tion of these N galaxies within the sample volume V is purely
random, their initial locations xn0 (n = 1, . . . ,N) defined by a
homogeneous Poisson process. A set of M nuclei within the vol-
ume V corresponds to the cell centres, or expansion centres driv-
ing the evolving matter distribution. The nuclei have locations
ym (m = 1, . . . ,M).

Following the specification of the initial positions of all
galaxies, the second stage of the procedure consists of the cal-
culation of the complete Voronoi track for each galaxy n =
1, . . . ,N (Sect. B.2) towards its wall, filament or vertex, or its
location within a cell when it is a field galaxy.

Simple Voronoi Element Models place all model galaxies in
either walls, edges or vertices. The versatility of the model also
allows combinations of element models, in which field (cell),
wall, filament and vertex distributions are superimposed. The
characteristics of the patterns and spatial distribution in these
Mixed Voronoi Element Models can be varied and tuned accord-
ing to the fractions of wall galaxies, filament galaxies, vertex and
field galaxies.

Fig. B.1. Schematic illustration of the galaxy projections in the Voronoi
clustering model. See text.

B.2. Voronoi tracks

The first step of the formalism is the determination for each
galaxy n the Voronoi cell Vα in which it is initially located, ie.
finding the nucleus jα which is closest to the galaxies’ initial
position xn0.

In the second step the galaxy n is moved from its initial posi-
tion xn0, towards its final destination in a wall, filament or vertex
(see Fig. B.1). The first section of the galaxy displacement is the
radial path along the direction defined by the galaxies’ initial lo-
cation wrt. its expansion centre jα. This direction is defined by
the unity vector ênα.

If the galaxy is a field galaxy it remains at its original loca-
tion. If it is a wall galaxy it is projected along direction ênα onto
the Voronoi wall Σαβ with which the radial path first intersects.
Filament galaxies are moved along the wall to the location where
the path intersects Λαβγ. Finally, if it is cluster galaxy the galax-
ies’ path is continued along the edge Λαβγ until it reaches its
final destination, vertex Ξαβγδ. The identity of the neighbouring
nuclei jα, jβ, jγ and jδ, and therefore the identity of the cellVα,
the wall Σαβ, the edge Λαβγ and the vertex Ξαβγδ, depends on the
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initial location xn0 of the galaxy, the position yα of its closest nu-
cleus and the definition of the galaxies’ path within the Voronoi
skeleton.

In summary, the path x
¯n is codified by

xn = yα + snα + snαβ + snαβγ (B.1)

= yα + snαênα + snαβênαβ + snαβγênαβγ

in which the four different components follow the directions de-
fined by:

• ênα:
unity vector of path within Voronoi cellVα;
• ênαβ:

unity vector of path within Voronoi wall Σαβ;
• ênαβγ:

unity vector of path along Voronoi edge Λαβγ;
• Vertex Ξαβγδ.

The cosmic matter distribution is obtained by calculating the in-
dividual displacement factors (snα, snαβ, snαβγ) for each model
galaxy, corresponding to their location within either wall, fila-
ment or vertex. In the Voronoi Element models all galaxies are
directly projected onto wall, edge or vertex following the path
depicted in Fig. B.1. The corresponding displacement factors in
Eq. (B.2) for a wall, filament or cluster galaxy are

Walls (snα, snαβ, snαβγ) = (υn, 0, 0)

Filaments (snα, snαβ, snαβγ) = (υn, σn, 0) (B.2)

Clusters (snα, snαβ, snαβγ) = (υn, σn, λn)

where the values of the parameters υn, σn and λn characterize
the crossing of the galaxies’ path with the wall, edge or vertex
towards which it moves.

A finite thickness is assigned to all Voronoi structural ele-
ments. The walls, filaments and vertices are assumed to have a
Gaussian radial density distribution specified by the widths RW
of the walls, RF of the filaments and RV of the vertices. Voronoi
wall galaxies are displaced according to the specified Gaussian
density profile in the direction perpendicular to their wall. A sim-
ilar procedure is followed for the Voronoi filament galaxies and
the Voronoi vertex galaxies. As a result the vertices stand out as
three-dimensional Gaussian peaks.
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