197 research outputs found

    Recurrent patterns of DNA copy number alterations in tumors reflect metabolic selection pressures.

    Get PDF
    Copy number alteration (CNA) profiling of human tumors has revealed recurrent patterns of DNA amplifications and deletions across diverse cancer types. These patterns are suggestive of conserved selection pressures during tumor evolution but cannot be fully explained by known oncogenes and tumor suppressor genes. Using a pan-cancer analysis of CNA data from patient tumors and experimental systems, here we show that principal component analysis-defined CNA signatures are predictive of glycolytic phenotypes, including 18F-fluorodeoxy-glucose (FDG) avidity of patient tumors, and increased proliferation. The primary CNA signature is enriched for p53 mutations and is associated with glycolysis through coordinate amplification of glycolytic genes and other cancer-linked metabolic enzymes. A pan-cancer and cross-species comparison of CNAs highlighted 26 consistently altered DNA regions, containing 11 enzymes in the glycolysis pathway in addition to known cancer-driving genes. Furthermore, exogenous expression of hexokinase and enolase enzymes in an experimental immortalization system altered the subsequent copy number status of the corresponding endogenous loci, supporting the hypothesis that these metabolic genes act as drivers within the conserved CNA amplification regions. Taken together, these results demonstrate that metabolic stress acts as a selective pressure underlying the recurrent CNAs observed in human tumors, and further cast genomic instability as an enabling event in tumorigenesis and metabolic evolution

    Narrative-based computational modelling of the Gp130/JAK/STAT signalling pathway.

    Get PDF
    BACKGROUND: Appropriately formulated quantitative computational models can support researchers in understanding the dynamic behaviour of biological pathways and support hypothesis formulation and selection by "in silico" experimentation. An obstacle to widespread adoption of this approach is the requirement to formulate a biological pathway as machine executable computer code. We have recently proposed a novel, biologically intuitive, narrative-style modelling language for biologists to formulate the pathway which is then automatically translated into an executable format and is, thus, usable for analysis via existing simulation techniques. RESULTS: Here we use a high-level narrative language in designing a computational model of the gp130/JAK/STAT signalling pathway and show that the model reproduces the dynamic behaviour of the pathway derived by biological observation. We then "experiment" on the model by simulation and sensitivity analysis to define those parameters which dominate the dynamic behaviour of the pathway. The model predicts that nuclear compartmentalisation and phosphorylation status of STAT are key determinants of the pathway and that alternative mechanisms of signal attenuation exert their influence on different timescales. CONCLUSION: The described narrative model of the gp130/JAK/STAT pathway represents an interesting case study showing how, by using this approach, researchers can model biological systems without explicitly dealing with formal notations and mathematical expressions (typically used for biochemical modelling), nevertheless being able to obtain simulation and analysis results. We present the model and the sensitivity analysis results we have obtained, that allow us to identify the parameters which are most sensitive to perturbations. The results, which are shown to be in agreement with existing mathematical models of the gp130/JAK/STAT pathway, serve us as a form of validation of the model and of the approach itself

    The journey from nurse to advanced nurse practitioner: applying concepts of role-transitioning

    Get PDF
    The advanced nurse practitioner (ANP) role was established in Ireland in 2001 and represents an important nursing role development within Irish healthcare. Currently there are 336 ANPs registered with the Nursing and Midwifery Board of Ireland, working across 40 specialties. This number is increasing exponentially in response to emerging and anticipated future service needs and population demand projecting to a critical mass of 750 by 2021. Health service provision is enhanced by advanced practice performance outcomes. This article explores nurse to advanced nurse practitioner transitional journeys, a concept that has not previously been researched in depth from an Irish perspective. The theories of Benner, Woods, and Bourdieu are reviewed to explore whether an advance practice career trajectory results in unique nurse-to-ANP role transitioning. Contextualising possible personal, professional and educational transitions may enable the promotion of effective career ‘scaffolding’ to enhance a smooth transition for aspiring ANPs into advanced nursing practice roles

    PTPN2, a Candidate Gene for Type 1 Diabetes, Modulates Interferon-γ–Induced Pancreatic β-Cell Apoptosis

    Get PDF
    OBJECTIVE: The pathogenesis of type 1 diabetes has a strong genetic component. Genome-wide association scans recently identified novel susceptibility genes including the phosphatases PTPN22 and PTPN2. We hypothesized that PTPN2 plays a direct role in beta-cell demise and assessed PTPN2 expression in human islets and rat primary and clonal beta-cells, besides evaluating its role in cytokine-induced signaling and beta-cell apoptosis. RESEARCH DESIGN AND METHODS: PTPN2 mRNA and protein expression was evaluated by real-time PCR and Western blot. Small interfering (si)RNAs were used to inhibit the expression of PTPN2 and downstream STAT1 in beta-cells, allowing the assessment of cell death after cytokine treatment. RESULTS: PTPN2 mRNA and protein are expressed in human islets and rat beta-cells and upregulated by cytokines. Transfection with PTPN2 siRNAs inhibited basal- and cytokine-induced PTPN2 expression in rat beta-cells and dispersed human islets cells. Decreased PTPN2 expression exacerbated interleukin (IL)-1beta + interferon (IFN)-gamma-induced beta-cell apoptosis and turned IFN-gamma alone into a proapoptotic signal. Inhibition of PTPN2 amplified IFN-gamma-induced STAT1 phosphorylation, whereas double knockdown of both PTPN2 and STAT1 protected beta-cells against cytokine-induced apoptosis, suggesting that STAT1 hyperactivation is responsible for the aggravation of cytokine-induced beta-cell death in PTPN2-deficient cells. CONCLUSIONS: We identified a functional role for the type 1 diabetes candidate gene PTPN2 in modulating IFN-gamma signal transduction at the beta-cell level. PTPN2 regulates cytokine-induced apoptosis and may thereby contribute to the pathogenesis of type 1 diabetes

    An exploration of the influences on under-representation of male pre-registration nursing students

    Get PDF
    Background:- Worldwide, men are under-represented in the nursing profession. In Scotland less than 10% of pre-registration nursing students are male. Reasons for this imbalance need to be understood. Objectives:- To explore the views of male pre-registration nursing students, nursing lecturers and school teachers about this imbalance. Design:- Mixed methods study using focus groups and online survey. Settings:- Focus groups in four locations across Scotland. Online survey sent to teachers across Scotland. Participants and methods:- Eight focus groups with 33 male nursing students; four focus groups with 21 university and college nursing lecturers; 46 school teachers returned the online survey. Results:- Although nursing was considered a worthwhile career with job stability and many opportunities, it was also viewed as not being a career for men. Assumptions about the profession and femininity were challenging for men and use of the term ‘male nurse’ was felt to be anomalous. In some circumstances the provision of intimate care to particular patient groups caused difficulty. Positive encouragement from others, a positive role model or knowledge of nursing from significant others could be helpful. However concerns about low earning potential and negative media publicity about the NHS could be a disincentive. Being mature and having resilience were important to cope with being a male nursing student in a mainly female workplace. Some more ‘technical’ specialties were felt to be more attractive to men. Conclusions:- Nursing is viewed as a worthwhile career choice for men, but the gendered assumptions about the feminine nature of nursing can be a deterrent

    The cardiomyocyte disrupts pyrimidine biosynthesis in non-myocytes to regulate heart repair

    Get PDF
    Various populations of cells are recruited to the heart after cardiac injury, but little is known about whether cardiomyocytes directly regulate heart repair. Using a murine model of ischemic cardiac injury, we demonstrate that cardiomyocytes play a pivotal role in heart repair by regulating nucleotide metabolism and fates of nonmyocytes. Cardiac injury induced the expression of the ectonucleotidase ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), which hydrolyzes extracellular ATP to form AMP. In response to AMP, cardiomyocytes released adenine and specific ribonucleosides that disrupted pyrimidine biosynthesis at the orotidine monophosphate (OMP) synthesis step and induced genotoxic stress and p53-mediated cell death of cycling nonmyocytes. As nonmyocytes are critical for heart repair, we showed that rescue of pyrimidine biosynthesis by administration of uridine or by genetic targeting of the ENPP1/AMP pathway enhanced repair after cardiac injury. We identified ENPP1 inhibitors using small molecule screening and showed that systemic administration of an ENPP1 inhibitor after heart injury rescued pyrimidine biosynthesis in nonmyocyte cells and augmented cardiac repair and postinfarct heart function. These observations demonstrate that the cardiac muscle cell regulates pyrimidine metabolism in nonmuscle cells by releasing adenine and specific nucleosides after heart injury and provide insight into how intercellular regulation of pyrimidine biosynthesis can be targeted and monitored for augmenting tissue repair

    Strain-Dependent Differences in Bone Development, Myeloid Hyperplasia, Morbidity and Mortality in Ptpn2-Deficient Mice

    Get PDF
    Single nucleotide polymorphisms in the gene encoding the protein tyrosine phosphatase TCPTP (encoded by PTPN2) have been linked with the development of autoimmunity. Here we have used Cre/LoxP recombination to generate Ptpn2ex2−/ex2− mice with a global deficiency in TCPTP on a C57BL/6 background and compared the phenotype of these mice to Ptpn2−/− mice (BALB/c-129SJ) generated previously by homologous recombination and backcrossed onto the BALB/c background. Ptpn2ex2−/ex2− mice exhibited growth retardation and a median survival of 32 days, as compared to 21 days for Ptpn2−/− (BALB/c) mice, but the overt signs of morbidity (hunched posture, piloerection, decreased mobility and diarrhoea) evident in Ptpn2−/− (BALB/c) mice were not detected in Ptpn2ex2−/ex2− mice. At 14 days of age, bone development was delayed in Ptpn2−/− (BALB/c) mice. This was associated with increased trabecular bone mass and decreased bone remodeling, a phenotype that was not evident in Ptpn2ex2−/ex2− mice. Ptpn2ex2−/ex2− mice had defects in erythropoiesis and B cell development as evident in Ptpn2−/− (BALB/c) mice, but not splenomegaly and did not exhibit an accumulation of myeloid cells in the spleen as seen in Ptpn2−/− (BALB/c) mice. Moreover, thymic atrophy, another feature of Ptpn2−/− (BALB/c) mice, was delayed in Ptpn2ex2−/ex2− mice and preceded by an increase in thymocyte positive selection and a concomitant increase in lymph node T cells. Backcrossing Ptpn2−/− (BALB/c) mice onto the C57BL/6 background largely recapitulated the phenotype of Ptpn2ex2−/ex2− mice. Taken together these results reaffirm TCPTP's important role in lymphocyte development and indicate that the effects on morbidity, mortality, bone development and the myeloid compartment are strain-dependent
    corecore