89 research outputs found

    Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes during Antiretroviral Therapy

    Full text link
    HIV-1 reservoirs are most often studied in peripheral blood (PB), but not all lymphocytes recirculate, particularly T follicular helper (Tfh) CD4+ T cells, as well as germinal center (GC) B cells, in lymph nodes (LNs). Ultrasound-guided fine needle biopsies (FNBs) from inguinal LNs and PB samples were obtained from 10 healthy controls (HCs) and 21 HIV-1-infected subjects [11 antiretroviral therapy (ART) naive and 10 on ART]. Tfh cells and GC B cells were enumerated by flow cytometry. HIV-1 DNA and cell-associated (CA) RNA levels in LNs and PB were quantified by real-time polymerase chain reaction. FNBs were obtained without adverse events. Tfh cells and GC B cells were highly elevated in ART-naive subjects, with a median GC B cell count >300-fold higher than HCs, but also remained higher in 4 out of the 10 subjects on ART. GC B cell counts and Tfh cell counts were highly correlated with each other, and also with activated T cells in LNs but not in blood. Levels of HIV-1 DNA and CA RNA viral burden in highly purified CD4+ T cells from FNBs were significantly elevated compared with those in CD4+ T cells from PB in the ART-naive group, but only trended toward an increase in the ART patients. FNBs enabled minimally invasive access to, and parallel measurement of residual activated T and B cells and viral burden within LNs in HIV-1-infected patients. These FNBs revealed significant GC activity that was not apparent from corresponding PB samples

    Holocene wildfire regimes in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types

    Get PDF
    Wildfire is the most common disturbance type in boreal forests and can trigger significant changes in forest composition. Waterlogging in peatlands determines the degree of tree cover and the depth of the burnt horizon associated with wildfires. However, interactions between peatland moisture, vegetation composition and flammability, and fire regime in forest and forested peatland in Eurasia remain largely unexplored, despite their huge extent in boreal regions. To address this knowledge gap, we reconstructed the Holocene fire regime, vegetation composition, and peatland hydrology at two sites located in predominantly light taiga (Pinus sylvestris Betula) with interspersed dark taiga communities (Pinus sibirica, Picea obovata, Abies sibirica) in western Siberia in the Tomsk Oblast, Russia. We found marked shifts in past water levels over the Holocene. The probability of fire occurrence and the intensification of fire frequency and severity increased at times of low water table (drier conditions), enhanced fuel dryness, and an intermediate dark-to-light taiga ratio. High water level, and thus wet peat surface conditions, prevented fires from spreading on peatland and surrounding forests. Deciduous trees (i.e. Betula) and Sphagnum were more abundant under wetter peatland conditions, and conifers and denser forests were more prevalent under drier peatland conditions. On a Holocene scale, severe fires were recorded between 7.5 and 4.5 ka with an increased proportion of dark taiga and fire avoiders (Pinus sibirica at Rybnaya and Abies sibirica at Ulukh–Chayakh) in a predominantly light taiga and fire-resister community characterised by Pinus sylvestris and lower local water level. Severe fires also occurred over the last 1.5 kyr and were associated with a declining abundance of dark taiga and fire avoiders, an expansion of fire invaders (Betula), and fluctuating water tables. These findings suggest that frequent, high-severity fires can lead to compositional and structural changes in forests when trees fail to reach reproductive maturity between fire events or where extensive forest gaps limit seed dispersal. This study also shows prolonged periods of synchronous fire activity across the sites, particularly during the early to mid-Holocene, suggesting a regional imprint of centennial- to millennial-scale Holocene climate variability on wildfire activity. Humans may have affected vegetation and fire from the Neolithic; however, increasing human presence in the region, particularly at the Ulukh–Chayakh Mire over the last 4 centuries, drastically enhanced ignitions compared to natural background levels. Frequent warm and dry spells predicted by climate change scenarios for Siberia in the future will enhance peatland drying and may convey a competitive advantage to conifer taxa. However, dry conditions will probably exacerbate the frequency and severity of wildfire, disrupt conifers' successional pathway, and accelerate shifts towards deciduous broadleaf tree cover. Furthermore, climate–disturbance–fire feedbacks will accelerate changes in the carbon balance of boreal peatlands and affect their overall future resilience to climate change

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nĂ©e European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60 % from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019)Swiss National Science Foundation | Ref. 200021_16959

    The Eurasian Modern Pollen Database (EMPD), version 2

    Get PDF
    The Eurasian (nee European) Modern Pollen Database (EMPD) was established in 2013 to provide a public database of high-quality modern pollen surface samples to help support studies of past climate, land cover, and land use using fossil pollen. The EMPD is part of, and complementary to, the European Pollen Database (EPD) which contains data on fossil pollen found in Late Quaternary sedimentary archives throughout the Eurasian region. The EPD is in turn part of the rapidly growing Neotoma database, which is now the primary home for global palaeoecological data. This paper describes version 2 of the EMPD in which the number of samples held in the database has been increased by 60% from 4826 to 8134. Much of the improvement in data coverage has come from northern Asia, and the database has consequently been renamed the Eurasian Modern Pollen Database to reflect this geographical enlargement. The EMPD can be viewed online using a dedicated map-based viewer at https://empd2.github.io and downloaded in a variety of file formats at https://doi.pangaea.de/10.1594/PANGAEA.909130 (Chevalier et al., 2019).Peer reviewe

    Effect of Screen Porosity on Selected Microclimatic Parameters of Naturally Ventilated Tropical Greenhouses

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 7 (2005): Effect of Screen Porosity on Selected Microclimatic Parameters of Naturally Ventilated Tropical Greenhouses by Peeyush Soni , Vilas M. Salokhe, H. J. Tanta

    Development of a Greenhouse Nutrient Recycling System for Tomato Production in Humid Tropics

    Full text link
    Rosana G. Moreira, Editor-in-Chief; Texas A&M UniversityThis is a paper from International Commission of Agricultural Engineering (CIGR, Commission Internationale du Genie Rural) E-Journal Volume 7 (2005): Development of a Greenhouse Nutrient Recycling System for Tomato Production in Humid Tropics by Uttam Dhakal, Vilas M. Salokhe, Han. J. Tantau, Johannes Ma

    Response of a spring-fed fen ecosystem in Central Eastern Europe (NW Romania) to climate changes during the last 4000 years : a high resolution multi-proxy reconstruction

    No full text
    We document the long-term development of a spring-fed fen assessing its sensivity to climate changes over the last ca. 4000 years. Our investigation is based on high-resolution, continuous plant macrofossil remains and mollusc records, complemented by pollen, geochemical analysis and radiocarbon dating of Valea Morii, located in the Feleac Hills (Transylvanian Depression) in NW Romania, Central Eastern Europe. Based on our palaeocological data we have distinguished three stages of wet habitat conditions: two stages between 4000 and 2450 cal yr BP and one in the last 800 cal yr BP, and one dry stage between ca. 2450 and 800 cal yr BP. These local habitat conditions appear to reasonably reflect regional climate characteristics. High-resolution analysis of two replicated cores documented a mostly comparable pattern of local plant and mollusc succession, and stable isotope values from ca. 500 cal yr BP. The appearance of C. mariscus during the last two centuries may be related to increased wetness and associated active CaCO3 precipitation, which allowed this plant to colonise the spring-fed fen studied. However, it can be not excluded that the occurrence and spread of a Cladium mariscus population at this site during the last two centuries might have been partly favoured by the warming of the climate after the Little Ice Age. The potential of carbonate oxygen stable isotope values as an indicator of major trends in climatic change, both temperature and humidity, in mountain spring-fed fen deposits is shown. Carbon isotopes in the carbonates were found to be useful in reconstruction of changes in vegetation, soil development and the dissolution of bedrock carbonates, primarily as a reaction to changes in climate humidity
    • 

    corecore