141 research outputs found

    Interlayer Exchange Coupling in (Ga,Mn)As-based Superlattices

    Full text link
    The interlayer coupling between (Ga,Mn)As ferromagnetic layers in all-semiconductor superlattices is studied theoretically within a tight-binding model, which takes into account the crystal, band and magnetic structure of the constituent superlattice components. It is shown that the mechanism originally introduced to describe the spin correlations in antiferromagnetic EuTe/PbTe superlattices, explains the experimental results observed in ferromagnetic semiconductor structures, i.e., both the antiferromagnetic coupling between ferromagnetic layers in IV-VI (EuS/PbS and EuS/YbSe) superlattices as well as the ferromagnetic interlayer coupling in III-V ((Ga,Mn)As/GaAs) multilayer structures. The model allows also to predict (Ga,Mn)As-based structures, in which an antiferromagnetic interlayer coupling could be expected.Comment: 4 pages, 3 figure

    Studies of Thermally Unstable Accretion Disks around Black Holes with Adaptive Pseudo-Spectral Domain Decomposition Method I. Limit-Cycle Behavior in the Case of Moderate Viscosity

    Full text link
    We present a numerical method for spatially 1.5-dimensional and time-dependent studies of accretion disks around black holes, that is originated from a combination of the standard pseudo-spectral method and the adaptive domain decomposition method existing in the literature, but with a number of improvements in both the numerical and physical senses. In particular, we introduce a new treatment for the connection at the interfaces of decomposed subdomains, construct an adaptive function for the mapping between the Chebyshev-Gauss-Lobatto collocation points and the physical collocation points in each subdomain, and modify the over-simplified 1-dimensional basic equations of accretion flows to account for the effects of viscous stresses in both the azimuthal and radial directions. Our method is verified by reproducing the best results obtained previously by Szuszkiewicz & Miller on the limit-cycle behavior of thermally unstable accretion disks with moderate viscosity. A new finding is that, according to our computations, the Bernoulli function of the matter in such disks is always and everywhere negative, so that outflows are unlikely to originate from these disks. We are encouraged to study the more difficult case of thermally unstable accretion disks with strong viscosity, and wish to report our results in a subsequent paper.Comment: 29 pages, 8 figures, accepted by Ap

    Why Low-Mass Black-Hole Binaries Are Transient

    Get PDF
    We consider transient behavior in low-mass X-ray binaries. In short-period neutron-star systems (orbital period less than ~ 1d) irradiation of the accretion disk by the central source suppresses this except at very low mass transfer rates. Formation constraints however imply that a significant fraction of these neutron star systems have nuclear-evolved main-sequence secondaries and thus mass transfer rates low enough to be transient. But most short-period low-mass black-hole systems will form with unevolved main-sequence companions and have much higher mass transfer rates. The fact that essentially all of them are nevertheless transient shows that irradiation is weaker, as a direct consequence of the fundamental black-hole property - the lack of a hard stellar surface.Comment: 13 pages (including 3 figures); accepted for publication in Ap

    Radiation pressure instability driven variability in the accreting black holes

    Full text link
    The time dependent evolution of the accretion disk around black hole is computed. The classical description of the α\alpha-viscosity is adopted so the evolution is driven by the instability operating in the innermost radiation-pressure dominated part of the accretion disk. We assume that the optically thick disk always extends down to the marginally stable orbit so it is never evacuated completely. We include the effect of the advection, coronal dissipation and vertical outflow. We show that the presence of the corona and/or the outflow reduce the amplitude of the outburst. If only about half of the energy is dissipated in the disk (with the other half dissipated in the corona and carried away by the outflow) the outburst amplitude and duration are consistent with observations of the microquasar GRS 1915+105. Viscous evolution explains in a natural way the lack of direct transitions from the state C to the state B in color-color diagram of this source. Further reduction of the fraction of energy dissipated in the optically thick disk switches off the outbursts which may explain why they are not seen in all high accretion rate sources being in the Very High State.Comment: 31 pages, 14 figures; accepted to Ap

    A Note on Bimodal Accretion Disks

    Get PDF
    The existence of bimodal disks is investigated. Following a simple argument based on energetic considerations we show that stationary, bimodal accretion disk models in which a Shakura--Sunyaev disk (SSD) at large radii matches an advection dominated accretion flow (ADAF) at smaller radii are never possible using the standard slim disk approach, unless some extra energy flux is present. The same argument, however, predicts the possibility of a transition from an outer Shapiro--Lightman--Eardley (SLE) disk to an ADAF, and from a SLE disk to a SSD. Both types of solutions have been found.Comment: 9 pages including 9 figures, accepted for publication in The Astrophysical Journa

    Universal spectral shape of high accretion rate AGN

    Full text link
    The spectra of quasars and NLS1 galaxies show surprising similarity in their spectral shape. They seem to scale only with the accretion rate. This is in contradiction with the simple expectations from the standard disk model which predicts lower disk temperature for higher black hole mass. Here we consider two mechanisms modifying the disk spectrum: the irradiation of the outer disk due to the scattering of the flux by the extended ionized medium (warm absorber and the development of the warm Comptonizing disk skin under the effect of the radiation pressure instability. Those two mechanisms seem to lead to a spectrum which indeed roughly scales, as observed, only with the accretion rate. The scenario applies only to objects with relatively high luminosity to the Eddington luminosity ratio for which disk evaporation is inefficient.Comment: 14 pages, 14 figures, 1 table, accepted for publication in A&

    Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties

    Full text link
    We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML) (23-45 \AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 \AA). While previous reports state that GaMnAs layers thinner than 50 \AA are paramagnetic in the whole Mn composition range achievable using MBE growth (up to 8% Mn), we have found that short period superlattices exhibit a paramagnetic-to-ferromagnetic phase transition with a transition temperature which depends on both the thickness of the magnetic GaMnAs layer and the nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the magnetic layers in superlattices are ferromagnetically coupled for both thin (below 50 \AA) and thick (above 50 \AA) GaMnAs layers.Comment: Proceedings of 4th International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology, September 23 - 28 (2001), Warszawa, Poland, to appear in Thin Solid Films. 24 pages, 8 figure

    The nature of the intranight variability of radio-quiet quasars

    Full text link
    We select a sample of 10 radio-quiet quasars with confirmed intranight optical variability and with available X-ray data. We compare the variability properties and the broad band spectral constraints to the predictions of intranight variability by three models: (i) irradiation of an accretion disk by a variable X-ray flux (ii) an accretion disk instability (iii) the presence of a weak blazar component. We concluded that the third model, e.g. the blazar component model, is the most promising if we adopt a cannonball model for the jet variable emission. In this case, the probability of detecting the intranight variability is within 20-80%, depending on the ratio of the disk to the jet optical luminosity. Variable X-ray irradiation mechanism is also possible but only under additional requirement: either the source should have a very narrow Hbeta line or occasional extremely strong flares should appear at very large disk radii.Comment: MNRAS (in press

    Definitive Evidence of Interlayer Coupling Between (Ga,Mn)As Layers Separated by a Nonmagnetic Spacer

    Full text link
    We have used polarized neutron reflectometry to study the structural and magnetic properties of the individual layers in a series of (Al,Be,Ga)As/(Ga,Mn)As/GaAs/(Ga,Mn)As multilayer samples. Structurally, we observe that the samples are virtually identical except for the GaAs spacer thickness (which varies from 3-12 nm), and confirm that the spacers contain little or no Mn. Magnetically, we observe that for the sample with the thickest spacer layer, modulation doping by the(Al,Be,Ga)As results in (Ga,Mn)As layers with very different temperature dependent magnetizations. However, as the spacer layer thickness is reduced, the temperature dependent magnetizations of the top an bottom (Ga,Mn)As layers become progressively more similar - a trend we find to be independent of the crystallographic direction along which spins are magnetized. These results definitively show that (Ga,Mn)As layers can couple across a non-magnetic spacer, and that such coupling depends on spacer thickness.Comment: Submitted to Physical Review

    FREE-CARRIER PLASMONS AS A NOVEL TOOL IN SEMICONDUCTOR PHYSICS*

    Get PDF
    It is demonstrated that free-carrier plasmons, being well defined collective excitations of the electron gas in the range of small wave vectors, can serve as a sensitive tool to investigate the optical processes related to the small momentum transfers. As an example the system HgSe:Fe is analysed both experimentally and theoretically. It is well known that the excitation of the free-carrier plasma in the light absorption process is possible only in the presence of defects breaking the translational invariance of the system. Due to the overall momentum conservation requirement there must exist a momentum source to make the photon absorption *This work is supported in part by CPBP 01.06. (141
    • 

    corecore