38 research outputs found

    Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study

    Get PDF
    Nicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR α4 or β2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since α4β2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the α4β2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [18F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [18F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousa

    Applications of bismuth(iii) compounds in organic synthesis

    Full text link

    DIAMOND ANVIL CELL ≡ SHOCK WAVE GUN ?

    No full text
    L'observation en microscopie électronique par transmission d'olivine (Mg, Fe)2 Si O4 déformée dans une cellule à enclumes de diamant chauffée par laser montre que cet appareillage crée des conditions de déformation semblables à celles produites par des ondes de choc.Transmission electron microscope observations of olivine (Mg, Fe)2 Si O4 deformed in a laser-heated diamond-anvil high pressure cell reveal that this device creates deformation conditions similar to those produced by shock waves

    INDIRECT PRESSURE MEASUREMENTS IN DIAMOND CELL UP TO 1 MEGABAR

    No full text
    On décrit une méthode de mesure indirecte de la pression en cellule diamant. Des jauges de contrainte mesurent la force appliquée aux enclumes qui a été étalonnée en fonction de la pression dans l'échantillon par la méthode de fluorescence du rubis.An indirect pressure measurement method for the diamond anvil cell is described. Strain gauges measuring the force applied to the anvils, are calibrated against the actual pressure in the sample, measured by the ruby fluorescence technique

    Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study

    No full text
    International audienceNicotinic acetylcholine receptors (nAChRs) are involved in a familial form of frontal lobe epilepsy, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In several ADNFLE families, mutations were identified in the nAChR α\alpha4 or β\beta2 subunit, which together compose the main cerebral nAChR. Electrophysiological assessment using in vitro expression systems indicated a gain of function of the mutant receptors. However the precise mechanisms by which they contribute to the pathogenesis of a focal epilepsy remain obscure, especially since α\alpha4β\beta2 nAChRs are known to be widely distributed within the entire brain. PET study using [18F]-F-A-85380, a high affinity agonist at the α\alpha4β\beta2 nAChRs, allows the determination of the regional distribution and density of the nAChRs in healthy volunteers and in ADNFLE patients, thus offering a unique opportunity to investigate some in vivo consequences of the molecular defect. We have assessed nAChR distribution in eight non-smoking ADNFLE patients (from five families) bearing an identified mutation in nAChRs and in seven age-matched non-smoking healthy volunteers using PET and [18^{18}F]-F-A-85380. Parametric images of volume of distribution (Vd) were generated as the ratio of tissue to plasma radioactivities. The images showed a clear difference in the pattern of the nAChR density in the brains of the patients compared to the healthy volunteers. Vd values revealed a significant increase (between 12 and 21%, P < 0.05) in the ADNFLE patients in the mesencephalon, the pons and the cerebellum when compared to control subjects. Statistical parametric mapping (SPM) was then used to better analyse subtle regional differences. This analysis confirmed clear regional differences between patients and controls: patients had increased nAChR density in the epithalamus, ventral mesencephalon and cerebellum, but decreased nAChR density in the right dorsolateral prefrontal region. In five patients who underwent an additional [18F]-fluorodeoxyglucose (FDG) PET experiment, hypometabolism was observed in the neighbouring area of the right orbitofrontal cortex. The demonstration of a regional nAChR density decrease in the prefrontal cortex, despite the known distribution of these receptors throughout the cerebral cortex, is consistent with a focal epilepsy involving the frontal lobe. We also propose that the nAChR density increase in mesencephalon is involved in the pathophysiology of ADNFLE through the role of brainstem ascending cholinergic systems in arousal
    corecore