144 research outputs found

    Characterisation of a pucBA deletion mutant from Rhodopseudomonas palustris lacking all but the pucBAd genes

    Get PDF
    Rhodopseudomonas palustris is a species of purple photosynthetic bacteria that has a multigene family of puc genes that encode the alpha and beta apoproteins, which form the LH2 complexes. A genetic dissection strategy has been adopted in order to try and understand which spectroscopic form of LH2 these different genes produce. This paper presents a characterisation of one of the deletion mutants generated in this program, the pucBAd only mutant. This mutant produces an unusual spectroscopic form of LH2 that only has a single large NIR absorption band at 800 nm. Spectroscopic and pigment analyses on this complex suggest that it has basically a similar overall structure as that of the wild-type HL LH2 complex. The mutant has the unique phenotype where the mutant LH2 complex is only produced when cells are grown at LL. At HL the mutant only produces the LH1-RC core complex

    Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome

    Get PDF
    Background: Development of the kidney is initiated when the ureteric bud (UB) branches from the Wolffian duct and invades the overlying metanephric mesenchyme (MM) triggering the mesenchymal/epithelial interactions that are the basis of organ formation. Multiple signaling pathways must be integrated to ensure proper timing and location of the ureteric bud formation. Methods and Principal Findings: We have used gene targeting to create an Lrp4 null mouse line. The mutation results in early embryonic lethality with a subpenetrant phenotype of kidney agenesis. Ureteric budding is delayed with a failure to stimulate the metanephric mesenchyme in a timely manner, resulting in failure of cellular differentiation and resulting absence of kidney formation in the mouse as well as comparable malformations in humans with Cenani-Lenz syndrome. Conclusion: Lrp4 is a multi-functional receptor implicated in the regulation of several molecular pathways, including Wnt and Bmp signaling. Lrp4 2/2 mice show a delay in ureteric bud formation that results in unilateral or bilateral kidney agenesis. These data indicate that Lrp4 is a critical regulator of UB branching and lack of Lrp4 results in congenital kidne

    Targeted 'Next-Generation' sequencing in anophthalmia and microphthalmia patients confirms SOX2, OTX2 and FOXE3 mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anophthalmia/microphthalmia (A/M) is caused by mutations in several different transcription factors, but mutations in each causative gene are relatively rare, emphasizing the need for a testing approach that screens multiple genes simultaneously. We used next-generation sequencing to screen 15 A/M patients for mutations in 9 pathogenic genes to evaluate this technology for screening in A/M.</p> <p>Methods</p> <p>We used a pooled sequencing design, together with custom single nucleotide polymorphism (SNP) calling software. We verified predicted sequence alterations using Sanger sequencing.</p> <p>Results</p> <p>We verified three mutations - c.542delC in S<it>OX2</it>, resulting in p.Pro181Argfs*22, p.Glu105X in <it>OTX2 </it>and p.Cys240X in <it>FOXE3</it>. We found several novel sequence alterations and SNPs that were likely to be non-pathogenic - p.Glu42Lys in <it>CRYBA4</it>, p.Val201Met in <it>FOXE3 </it>and p.Asp291Asn in <it>VSX2</it>. Our analysis methodology gave one false positive result comprising a mutation in <it>PAX6 </it>(c.1268A > T, predicting p.X423LeuextX*15) that was not verified by Sanger sequencing. We also failed to detect one 20 base pair (bp) deletion and one 3 bp duplication in <it>SOX2</it>.</p> <p>Conclusions</p> <p>Our results demonstrated the power of next-generation sequencing with pooled sample groups for the rapid screening of candidate genes for A/M as we were correctly able to identify disease-causing mutations. However, next-generation sequencing was less useful for small, intragenic deletions and duplications. We did not find mutations in 10/15 patients and conclude that there is a need for further gene discovery in A/M.</p

    Association of a de novo 16q copy number variant with a phenotype that overlaps with Lenz microphthalmia and Townes-Brocks syndromes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anophthalmia and microphthalmia are etiologically and clinically heterogeneous. Lenz microphthalmia is a syndromic form that is typically inherited in an X-linked pattern, though the causative gene mutation is unknown. Townes-Brocks syndrome manifests thumb anomalies, imperforate anus, and ear anomalies. We present a 13-year-old boy with a syndromic microphthalmia phenotype and a clinical diagnosis of Lenz microphthalmia syndrome.</p> <p>Case Presentation</p> <p>The patient was subjected to clinical and molecular evaluation, including array CGH analysis. The clinical features included left clinical anophthalmia, right microphthalmia, anteriorly placed anus with fistula, chordee, ventriculoseptal defect, patent ductus arteriosus, posteriorly rotated ears, hypotonia, growth retardation with delayed bone age, and mental retardation. The patient was found to have an approximately 5.6 Mb deletion of 16q11.2q12.1 by microarray based-comparative genomic hybridization, which includes the <it>SALL1 </it>gene, which causes Townes-Brocks syndrome.</p> <p>Conclusions</p> <p>Deletions of 16q11.2q12.2 have been reported in several individuals, although those prior reports did not note microphthalmia or anophthalmia. This region includes <it>SALL1</it>, which causes Townes-Brocks syndrome. In retrospect, this child has a number of features that can be explained by the <it>SALL1 </it>deletion, although it is not clear if the microphthalmia is a rare feature of Townes-Brocks syndrome or caused by other mechanisms. These data suggest that rare copy number changes may be a cause of syndromic microphthalmia allowing a personalized genomic medicine approach to the care of patients with these aberrations.</p

    Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis

    Get PDF
    The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.info:eu-repo/semantics/publishedVersio

    The Epidemiology, Genetics and Future Management of Syndactyly

    Get PDF
    Syndactyly is a condition well documented in current literature due to it being the most common congenital hand defect, with a large aesthetic and functional significance

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers

    Mutations in DONSON disrupt replication fork stability and cause microcephalic dwarfism

    Get PDF
    To ensure efficient genome duplication, cells have evolved numerous factors that promote unperturbed DNA replication and protect, repair and restart damaged forks. Here we identify downstream neighbor of SON (DONSON) as a novel fork protection factor and report biallelic DONSON mutations in 29 individuals with microcephalic dwarfism. We demonstrate that DONSON is a replisome component that stabilizes forks during genome replication. Loss of DONSON leads to severe replication-associated DNA damage arising from nucleolytic cleavage of stalled replication forks. Furthermore, ATM- and Rad3-related (ATR)-dependent signaling in response to replication stress is impaired in DONSON-deficient cells, resulting in decreased checkpoint activity and the potentiation of chromosomal instability. Hypomorphic mutations in DONSON substantially reduce DONSON protein levels and impair fork stability in cells from patients, consistent with defective DNA replication underlying the disease phenotype. In summary, we have identified mutations in DONSON as a common cause of microcephalic dwarfism and established DONSON as a critical replication fork protein required for mammalian DNA replication and genome stability

    Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition)

    Get PDF
    The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers
    • 

    corecore