313 research outputs found

    Inhibition of platelet aggregation by carbon monoxide-releasing molecules (CO-RMs): comparison with NO donors

    Get PDF
    Carbon monoxide (CO) and CO-releasing molecules (CO-RMs) inhibit platelet aggregation in vitro. Herein, we compare the anti-platelet action of CORM-3, which releases CO rapidly (t½ 1 min), and CORM-A1, which slowly releases CO (t½ = 21 min). The anti-platelet effects of NO donors with various kinetics of NO release were studied for comparison. The effects of CO-RMs and NO donors were analyzed in washed human platelets (WP), platelets rich plasma (PRP), or whole blood (WB) using aggregometry technique. CORM-3 and CORM-A1 inhibited platelet aggregation in human PRP, WP, or WB, in a concentration-dependent manner. In all three preparations, CORM-A1 was more potent than CORM-3. Inhibition of platelets aggregation by CORM-A1 was not significantly affected by a guanylate cyclase inhibitor (ODQ) and a phosphodiesterase-5 inhibitor, sildenafil. In contrast, inhibition of platelet aggregation by NO donors was more potent with a fast NO releaser (DEA-NO, t½ = 2 min) than slow NO releasers such as PAPA-NO (t½ = 15 min) or other slow NO donors. Predictably, the anti-platelet effect of DEA-NO and other NO donors was reversed by ODQ while potentiated by sildenafil. In contrast to NO donors which inhibit platelets proportionally to the kinetics of NO released via activation of soluble guanylate cyclase (sGC), the slow CO-releaser CORM-A1 is a superior anti-platelet agent as compared to CORM-3 which releases CO instantly. The anti-platelet action of CO-RMs does not involve sGC activation. Importantly, CORM-A1 or its derivatives representing the class of slow CO releasers display promising pharmacological profile as anti-platelet agents

    (RS)-Tricarbon­yl(η4-1,3-diacet­oxy-5,5-dimethyl­cyclo­hexa-1,3-diene)iron(0)

    Get PDF
    In the title compound, [Fe(C12H16O4)(CO)3], the diene moiety of the mol­ecule is virtually planar, with a C—C—C—C torsion angle of −1.4 (2)°. The six-membered ring exhibits a boat conformation, with torsion angles of 46.2 (2) and 46.5 (3)° for a double-bond and the two attached Csp 3 atoms. The Fe atom is coordinated to all four of the diene C atoms, with bond lengths between 2.041 (2) and 2.117 (2) Å. The Fe(CO)3 tripod adopts a conformation with one CO ligand eclipsing the Csp 3—Csp 3 single bond

    The Carbon Monoxide Releasing Molecule CORM-2 Attenuates Pseudomonas aeruginosa Biofilm Formation

    Get PDF
    Chronic infections resulting from biofilm formation are difficult to eradicate with current antimicrobial agents and consequently new therapies are needed. This work demonstrates that the carbon monoxide-releasing molecule CORM-2, previously shown to kill planktonic bacteria, also attenuates surface-associated growth of the Gram-negative pathogen Pseudomonas aeruginosa by both preventing biofilm maturation and killing bacteria within the established biofilm. CORM-2 treatment has an additive effect when combined with tobramycin, a drug commonly used to treat P. aeruginosa lung infections. CORM-2 inhibited biofilm formation and planktonic growth of the majority of clinical P. aeruginosa isolates tested, for both mucoid and non-mucoid strains. While CORM-2 treatment increased the production of reactive oxygen species by P. aeruginosa biofilms, this increase did not correlate with bacterial death. These data demonstrate that CO-RMs possess potential novel therapeutic properties against a subset of P. aeruginosa biofilm related infections

    Bilirubin decreases NOS2 expression via inhibition of NAD(P)H oxidase: implications for protection against endotoxic shock in rats.

    Get PDF
    We investigated a possible beneficial role for bilirubin, one of the products of heme degradation by the cytoprotective enzyme heme oxygenase-1 in counteracting Escherichia coli endotoxin-mediated toxicity. Homozygous jaundice Gunn rats, which display high plasma bilirubin levels due to deficiency of glucuronyl transferase activity, and Sprague-Dawley rats subjected to sustained exogenous bilirubin administration were more resistant to endotoxin (LPS)-induced hypotension and death compared with nonhyperbilirubinemic rats. LPS-stimulated production of nitric oxide (NO) was significantly decreased in hyperbilirubinemic rats compared with normal animals; this effect was associated with reduction of inducible NO synthase (NOS2) expression in renal, myocardial, and aortic tissues. Furthermore, NOS2 protein expression and activity were reduced in murine macrophages stimulated with LPS and preincubated with bilirubin at concentrations similar to that found in the serum of hyperbilirubinemic animals. This effect was secondary to inhibition of NAD(P)H oxidase since 1) inhibition of NAD(P)H oxidase attenuated NOS2 induction by LPS, 2) bilirubin decreased NAD(P)H oxidase activity in vivo and in vitro, and 3) down-regulation of NOS2 by bilirubin was reversed by addition of NAD(P)H. These findings indicate that bilirubin can act as an effective agent to reduce mortality and counteract hypotension elicited by endotoxin through mechanisms involving a decreased NOS2 induction secondary to inhibition of NAD(P)H oxidase

    Bioactive properties of iron-containing carbon monoxide-releasing molecules

    Get PDF
    Carbon monoxide-releasing molecules (CO-RMs) are compounds capable of delivering controlled amounts of CO within a cellular environment. Ruthenium-based carbonyls [tricarbonyldichloro ruthenium(II) dimer and tricarbonylchloro-(glycinato)ruthenium(II)] and boronacorbonates (sodium boranocarbonate) have been shown to promote vasodilatory, cardioprotective, and anti-inflammatory activities in a variety of experimental models. Here, we extend our previous studies by showing that η-4-(4-bromo-6-methyl-2-pyrone)tricarbonyl iron (0) (CORM-F3), an irontricarbonyl complex that contains a 2-pyrone motif, liberates CO in vitro and exerts pharmacological actions that are typical of CO gas. Specifically, CORM-F3 caused vasorelaxation in isolated aortic rings and inhibited the inflammatory response (e.g., nitrite production) of RAW264.7 macrophages stimulated with endotoxin in a dose-dependent fashion. By

    BIOACTIVE PROPERTIES OF IRON-CONTAINING CARBON

    Get PDF
    Carbon monoxide-releasing molecules (CO-RMs) are compounds capable of delivering controlled amounts of CO within a cellular environment. Ruthenium-based carbonyls (CORM-2 and CORM-3) and boronacorbonates (CORM-A1) have been shown to promote vasodilatory, cardioprotective and anti-inflammatory activities in a variety of experimental models. Here we extend our previous studies by showing that CORM-F3, an irontricarbonyl complex which contains a 2-pyrone motif, liberates CO in vitro and exerts pharmacological actions that are typical of CO gas. Specifically, CORM-F3 caused vasorelaxation in isolated aortic rings and inhibited the inflammatory response (eg nitrite production) of RAW264. 7 macrophages stimulated with endotoxin in a dose-dependent fashion. By analyzing the rate of CO release, we found that when the bromide at the 4-position of the 2-pyrone in CORM-F3 is substituted with a chloride group (CORM-F8), the rate of CO release is significantly decreased (4.5 fold) and a further decrease is observed when the 4-and 6-positions are substituted with a methyl group (CORM-F11) or a hydrogen (CORM-F7), respectively. Interestingly, the compounds containing halogens at the 4-position and the methyl at the 6-position of the 2-pyrone ring (CORM-F3 and CORM-F8) were found to be less cytotoxic compared to other CO-RMs when tested in RAW246. 7 macrophages. Thus, iron-based carbonyls mediate pharmacological responses that are achieved through liberation of CO and the nature of the substituents in the organic ligand have a profound effect on both the rate of CO release and cytotoxicity

    Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous animal studies have shown that <it>Curcuma (C.) longa </it>lowers plasma glucose. <it>C. longa </it>may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of <it>C. longa </it>on postprandial plasma glucose, insulin levels and glycemic index (GI) in healthy subjects.</p> <p>Methods</p> <p>Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with capsules containing a placebo or <it>C. longa</it>. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively.</p> <p>Results</p> <p>The ingestion of 6 g <it>C. longa </it>had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (<it>P </it>= 0.03) and 60 min (<it>P </it>= 0.041) after the OGTT including <it>C. longa</it>. The insulin AUCs were also significantly higher after the ingestion of <it>C. longa</it>, 15 (<it>P </it>= 0.048), 30 (<it>P </it>= 0.035), 90 (<it>P </it>= 0.03), and 120 (<it>P </it>= 0.02) minutes after the OGTT.</p> <p>Conclusions</p> <p>The ingestion of 6 g <it>C. longa </it>increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that <it>C. longa </it>may have an effect on insulin secretion.</p> <p>Trial registration number</p> <p>NCT01029327</p

    Preventing Left Ventricular Hypertrophy by ACE Inhibition in Hypertensive Patients With Type 2 Diabetes: A prespecified analysis of the Bergamo Nephrologic Diabetes Complications Trial (BENEDICT)

    Get PDF
    OBJECTIVE—In patients with type 2 diabetes, left ventricular hypertrophy (LVH) predicts cardiovascular events, and the prevention of LVH is cardioprotective. We sought to compare the effect of ACE versus non-ACE inhibitor therapy on incident electrocardiographic (ECG) evidence of LVH (ECG-LVH)

    Designing organometallic compounds for catalysis and therapy

    Get PDF
    Bioorganometallic chemistry is a rapidly developing area of research. In recent years organometallic compounds have provided a rich platform for the design of effective catalysts, e.g. for olefin metathesis and transfer hydrogenation. Electronic and steric effects are used to control both the thermodynamics and kinetics of ligand substitution and redox reactions of metal ions, especially Ru II. Can similar features be incorporated into the design of targeted organometallic drugs? Such complexes offer potential for novel mechanisms of drug action through incorporation of outer-sphere recognition of targets and controlled activation features based on ligand substitution as well as metal- and ligand-based redox processes. We focus here on η 6-arene, η 5-cyclopentadienyl sandwich and half-sandwich complexes of Fe II, Ru II, Os II and Ir III with promising activity towards cancer, malaria, and other conditions. © 2012 The Royal Society of Chemistry
    corecore