260 research outputs found
The cetene scale and the induction period preceding the spontaneous ignition of diesel fuels in bombs
In the present report a comparison is made between the scale obtained with mixtures of cetane and l-methyl naphthalene in a bomb, and that obtained with the same fuels in a Waukesha engine. The tests were conducted in a metal bomb heated by a Nichrome spiral. The fuel was injected into the bomb from a Bosch jet by means of a specially constructed plunger pump. The instant injection and the pressure curve in the bomb were registered by a beam of light which was reflected from a mirror connected to the needle of the jet and to a membrane indicator
Dynamics of Nanometer-Scale Foil Targets Irradiated with Relativistically Intense Laser Pulses
In this letter we report on an experimental study of high harmonic radiation
generated in nanometer-scale foil targets irradiated under normal incidence.
The experiments constitute the first unambiguous observation of odd-numbered
relativistic harmonics generated by the component of the
Lorentz force verifying a long predicted property of solid target harmonics.
Simultaneously the observed harmonic spectra allow in-situ extraction of the
target density in an experimental scenario which is of utmost interest for
applications such as ion acceleration by the radiation pressure of an
ultraintense laser.Comment: 5 pages, 4 figure
Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.
The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+) current affects intracellular Ca(2+) dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na(+)/Ca(2+) exchanger, sarcolemmal Ca(2+) pump, and sarcolemmal Ca(2+) leak), and stationary and mobile Ca(2+) buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca(2+). We obtained parameters from voltage-clamp protocols of L-type Ca(2+) current and line-scan recordings of Ca(2+) concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca(2+) transient in myocytes loaded with 50 μM Fluo-3. We found that local Ca(2+) concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca(2+) crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca(2+) flux distribution. The model additionally predicts that local Ca(2+) trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca(2+) trigger flux. We found also that the activation of allosteric Ca(2+)-binding sites on the Na(+)/Ca(2+) exchanger could provide a mechanism for regulating global and local Ca(2+) trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na(+)/Ca(2+) exchanger fluxes to intracellular Ca(2+) dynamics
Molecular and Subcellular-Scale Modeling of Nucleotide Diffusion in the Cardiac Myofilament Lattice
AbstractContractile function of cardiac cells is driven by the sliding displacement of myofilaments powered by the cycling myosin crossbridges. Critical to this process is the availability of ATP, which myosin hydrolyzes during the cross-bridge cycle. The diffusion of adenine nucleotides through the myofilament lattice has been shown to be anisotropic, with slower radial diffusion perpendicular to the filament axis relative to parallel, and is attributed to the periodic hexagonal arrangement of the thin (actin) and thick (myosin) filaments. We investigated whether atomistic-resolution details of myofilament proteins can refine coarse-grain estimates of diffusional anisotropy for adenine nucleotides in the cardiac myofibril, using homogenization theory and atomistic thin filament models from the Protein Data Bank. Our results demonstrate considerable anisotropy in ATP and ADP diffusion constants that is consistent with experimental measurements and dependent on lattice spacing and myofilament overlap. A reaction-diffusion model of the half-sarcomere further suggests that diffusional anisotropy may lead to modest adenine nucleotide gradients in the myoplasm under physiological conditions
In vitro bioactivity of biphasic calcium phosphate silicate glassceramic in CaO-SiO2-P2O5 system
The main purpose of the paper is the evaluation of the influence of chemical composition of the gel of the synthesized 15CaO·0.5P2O5·6SiO2 glass-ceramic on the structure, crystallization behaviour and in vitro bioactivity in static conditions for different periods of time - 3, 9 and 30 days in 1.5SBF. The obtained glass-ceramic was synthesized via polystep sol-gel technique. The structure of the prepared and the one thermally treated at 1200°C for 2 h powder was studied by XRD, 29Si MAS NMR, FTIR and SEM
Building professional discourse in emerging markets: Language, context and the challenge of sensemaking
Using ethnographic evidence from the former Soviet republics, this article examines a relatively new and mainly unobserved in the International Business (IB) literature phenomenon of communication disengagement that manifests itself in many emerging markets. We link it to the deficiencies of the local professional business discourse rooted in language limitations reflecting lack of experience with the market economy. This hampers cognitive coherence between foreign and local business entities, adding to the liability of foreignness as certain instances of professional experience fail to find adequate linguistic expression, and complicates cross-cultural adjustments causing multi-national companies (MNCs) financial losses. We contribute to the IB literature by examining cross-border semantic sensemaking through a retrospectively constructed observational study. We argue that a relative inadequacy of the national professional idiom is likely to remain a feature of business environment in post-communist economies for some time and therefore should be factored into business strategies of MNCs. Consequently, we recommend including discursive hazards in the risk evaluation of international projects
A comparative study of knowledge construction within online user support discussion forums in Chinese and English-language cultural contexts
Many IT companies like HP, Dell and Lenovo have established both English language and Chinese user support forums for their consumers to share and construct knowledge. The innovative knowledge generated in these virtual product user communities is valuable for companies enabling them to incorporate users’ innovative insights and problems solving skills. This research compares the knowledge construction processes within such forums in English and Chinese cultural contexts. The research adopts a method combining content analysis of discussion threads where technical problems are solved, complemented by observation and thematic analysis of interviews with forum members. The results show that the cultural and language differences do not cause a big change of users’ knowledge construction patterns. However, the character of Chinese language and culture can indirectly affect the process by including more social information to influence social interactions. The research suggests that more tailored facilitation strategies should be adopted in managing producer sponsored user support forums designed for different cultural regions
Numerical Analysis of Ca2+ Signaling in Rat Ventricular Myocytes with Realistic Transverse-Axial Tubular Geometry and Inhibited Sarcoplasmic Reticulum
The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca2+). To investigate how the t-tubule microanatomy and the distribution of membrane Ca2+ flux affect cardiac excitation-contraction coupling we developed a 3-D continuum model of Ca2+ signaling, buffering and diffusion in rat ventricular myocytes. The transverse-axial t-tubule geometry was derived from light microscopy structural data. To solve the nonlinear reaction-diffusion system we extended SMOL software tool (http://mccammon.ucsd.edu/smol/). The analysis suggests that the quantitative understanding of the Ca2+ signaling requires more accurate knowledge of the t-tubule ultra-structure and Ca2+ flux distribution along the sarcolemma. The results reveal the important role for mobile and stationary Ca2+ buffers, including the Ca2+ indicator dye. In agreement with experiment, in the presence of fluorescence dye and inhibited sarcoplasmic reticulum, the lack of detectible differences in the depolarization-evoked Ca2+ transients was found when the Ca2+ flux was heterogeneously distributed along the sarcolemma. In the absence of fluorescence dye, strongly non-uniform Ca2+ signals are predicted. Even at modest elevation of Ca2+, reached during Ca2+ influx, large and steep Ca2+ gradients are found in the narrow sub-sarcolemmal space. The model predicts that the branched t-tubule structure and changes in the normal Ca2+ flux density along the cell membrane support initiation and propagation of Ca2+ waves in rat myocytes
- …