88 research outputs found
Dead Wood Necromass in a Moist Tropical Forest : Stocks, Fluxes, and Spatiotemporal Variability
Woody debris (WD) stocks and fluxes are important components of forest carbon budgets and yet remain understudied, particularly in tropical forests. Here we present the most comprehensive assessment of WD stocks and fluxes yet conducted in a tropical forest, including one of the first tropical estimates of suspended WD. We rely on data collected over 8 years in an old-growth moist tropical forest in Panama to quantify spatiotemporal variability and estimate minimum sample sizes for different components. Downed WD constituted the majority of total WD mass (78%), standing WD contributed a substantial minority (21%), and suspended WD was the smallest component (1%). However, when considering sections of downed WD that are elevated above the soil, the majority of WD inputs and approximately 50% of WD stocks were disconnected from the forest floor. Branchfall and liana wood accounted for 17 and 2% of downed WD, respectively. Residence times averaged 1.9 years for standing coarse WD (CWD; > 20 cm diameter) and 3.6 years for downed CWD. WD stocks and inputs were highly spatially variable, such that the sampling efforts necessary to estimate true values within 10% with 95% confidence were > 130 km of transects for downed CWD and > 550 ha area for standing CWD. The vast majority of studies involve much lower sampling efforts, suggesting that considerably more data are required to precisely quantify tropical forest WD pools and fluxes. The demonstrated importance of elevated WD in our study indicates a need to understand how elevation above the ground alters decomposition rates and incorporate this understanding into models of forest carbon cycling.Peer reviewe
Is the incidence of meningiomas underestimated? A regional survey
We assessed the undercount of meningiomas in a population-based cancer registry. A comprehensive material was formed by compiling hospital sources with the Finnish Cancer Registry database. The completeness of each source ranged 62â69%. The corrected age-standardised meningioma incidence was 2.9/100â000 for men and 13.0/100â000 for women, a third higher than the cancer registry figures
Global variation in the cost of increasing ecosystem carbon
Slowing the reduction, or increasing the accumulation, of organic carbon stored in biomass and soils has been suggested as a potentially rapid and cost-effective method to reduce the rate of atmospheric carbon increase(1). The costs of mitigating climate change by increasing ecosystem carbon relative to the baseline or business-as-usual scenario has been quantified in numerous studies, but results have been contradictory, as both methodological issues and substance differences cause variability(2). Here we show, based on 77 standardized face-to-face interviews of local experts with the best possible knowledge of local land-use economics and sociopolitical context in ten landscapes around the globe, that the estimated cost of increasing ecosystem carbon varied vastly and was perceived to be 16-27 times cheaper in two Indonesian landscapes dominated by peatlands compared with the average of the eight other landscapes. Hence, if reducing emissions from deforestation and forest degradation (REDD+) and other land-use mitigation efforts are to be distributed evenly across forested countries, for example, for the sake of international equity, their overall effectiveness would be dramatically lower than for a cost-minimizing distribution.Peer reviewe
Co-Deletion of Chromosome 1p/19q and IDH1/2 Mutation in Glioma Subsets of Brain Tumors in Chinese Patients
OBJECTIVE: To characterize co-deletion of chromosome 1p/19q and IDH1/2 mutation in Chinese brain tumor patients and to assess their associations with clinical features. METHODS: In a series of 528 patients with gliomas, pathological and radiological materials were reviewed. Pathological constituents of tumor subsets, incidences of 1p/19q co-deletion and IDH1/2 mutation in gliomas by regions and sides in the brain were analyzed. RESULTS: Overall, 1p and 19q was detected in 339 patients by FISH method while the sequence of IDH1/2 was determined in 280 patients. Gliomas of frontal, temporal and insular origin had significantly different pathological constituents of tumor subsets (P<0.001). Gliomas of frontal origin had significantly higher incidence of 1p/19q co-deletion (50.4%) and IDH1/2 mutation (73.5%) than those of non-frontal origin (27.0% and 48.5%, respectively) (P<0.001), while gliomas of temporal origin had significantly lower incidence of 1p/19q co-deletion (23.9%) and IDH1/2 mutation (41.7%) than those of non-temporal origin (39.9% and 63.2%, respectively) (P = 0.013 and P = 0.003, respectively). Subgroup analysis confirmed these findings in oligoastrocytic and oligodendroglial tumors, respectively. Although the difference of 1p/19q co-deletion was not statistically significant in temporal oligodendroglial tumors, the trend was marginally significant (P = 0.082). However, gliomas from different sides of the brain did not show significant different pathological constituents, incidences of 1p/19q co-deletion or IDH1/2 mutation. CONCLUSION: Preferential distribution of pathological subsets, 1p/19q co-deletion and IDH1/2 mutation were confirmed in some brain regions in Chinese glioma patients, implying their distinctive tumor genesis and predictive value for prognosis
Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees â„ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies
Densidade da madeira de ĂĄrvores em savanas do norte da AmazĂŽnia brasileira
Densidade da madeira (DM) Ă© uma variĂĄvel importante para estimativas de estoques de carbono arbĂłreo em ecossistemas terrestres. Este tema Ă© pobremente investigado em ĂĄreas de savana da AmazĂŽnia brasileira. O objetivo deste estudo foi investigar a DM das oito principais espĂ©cies arbĂłreas que ocorrem na savana aberta de Roraima, a maior ĂĄrea de savana do norte do bioma AmazĂŽnia. Foram verificadas as variaçÔes na DM em função da espĂ©cie e dos diferentes diĂąmetros observados ao longo da dimensĂŁo vertical de 75 indivĂduos amostrados em seis sĂtios de coleta. Foi utilizado o mĂ©todo direto para obtenção de peças de madeira do fuste e da copa. Os resultados indicaram discrepĂąncia significativa interespecĂfica, sendo Roupala montana Aubl. a espĂ©cie de maior DM mĂ©dia (0,674 g cm-3). Foi detectado que existe variação significativa da DM entre as peças do fuste e da copa, independente da espĂ©cie e do sĂtio de coleta. A densidade da madeira de peças da copa com diĂąmetro entre 5 e 10 cm pode ser utilizada como preditora da DM mĂ©dia do indivĂduo arbĂłreo. NĂłs concluimos que a DM das oito espĂ©cies arbĂłreas investigadas possui variabilidade interespecĂfica, com discrepĂąncias entre a DM do fuste e das partes lenhosas da copa. As distinçÔes aqui detectadas devem ser considerados como uma importante ferramenta para melhorar as estimativas de estoque de carbono em ĂĄreas de savanas na AmazĂŽnia
Malignant Tumors of the Central Nervous System
Malignant tumors of the central nervous system in adults comprise a heterogeneous group of malignancies, the largest subgroups comprising astrocytomas, ependymomas, and oligodendrogliomas. Glioblastomas are the most common tumor type, and they have dismal prognosis. Due to differences in cell type of origin, as well as pathogenesis, it is plausible that their etiology also differs between tumor types. The etiology of malignant CNS tumors is largely unknown and no occupational risk factors have been definitively identified. High doses of ionizing radiation increase the risk, but in occupational settings the dose levels appear too small to result in discernible excesses. Several studies have assessed possible effect of extremely low frequency and radiofrequency electromagnetic fields, but the results are inconsistent. Increased brain tumor risk has been reported in agricultural workers, but no specific exposure has been linked to them. Pesticides have been analyzed in several studies without showing a clear increase in risk.acceptedVersionPeer reviewe
Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications
Less than half of the original two million square kilometers of the Cerrado vegetation remains standing, and there are still many uncertainties as to how to conserve and prioritize remaining areas effectively. A key limitation is the continuing lack of geographically-extensive evaluation of ecosystem-level properties across the biome. Here we sought to address this gap by comparing the woody vegetation of the typical cerrado of the CerradoâAmazonia Transition with that of the core area of the Cerrado in terms of both tree diversity and vegetation biomass. We used 21 one-hectare plots in the transition and 18 in the core to compare key structural parameters (tree height, basal area, and above-ground biomass), and diversity metrics between the regions. We also evaluated the effects of temperature and precipitation on biomass, as well as explored the species diversity versus biomass relationship. We found, for the first time, both that the typical cerrado at the transition holds substantially more biomass than at the core, and that higher temperature and greater precipitation can explain this difference. By contrast, plot-level alpha diversity was almost identical in the two regions. Finally, contrary to some theoretical expectations, we found no positive relationship between species diversity and biomass for the Cerrado woody vegetation. This has implications for the development of effective conservation measures, given that areas with high biomass and importance for the compensation of greenhouse gas emissions are often not those with the greatest diversity
- âŠ