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Abstract Less than half of the original two million square kilometers of the Cerrado 44 

vegetation remains standing, and there are still many uncertainties as to how to conserve and 45 

prioritize remaining areas effectively. A key limitation is the continuing lack of 46 

geographically-extensive evaluation of ecosystem-level properties across the biome. Here we 47 

sought to address this gap by comparing the woody vegetation of the typical cerrado of the 48 

Cerrado-Amazonia Transition with that of the core area of the Cerrado in terms of both tree 49 

diversity and vegetation biomass. We used 21 one-hectare plots in the transition and 18 in the 50 

core to compare key structural parameters (tree height, basal area, and above-ground 51 

biomass), and diversity metrics between the regions. We also evaluated the effects of 52 

temperature and precipitation on biomass, as well as explored the species diversity vs. 53 

biomass relationship. We found, for the first time, both that the typical cerrado at the 54 

transition holds substantially more biomass than at the core, and that higher temperature and 55 

greater precipitation can explain this difference. By contrast, plot-level alpha diversity was 56 

almost identical in the two regions. Finally, contrary to some theoretical expectations, we 57 

found no positive relationship between species diversity and biomass for the Cerrado woody 58 

vegetation. This has implications for the development of effective conservation measures, 59 

given that areas with high biomass and importance for the compensation of greenhouse gas 60 

emissions are often not those with the greatest diversity. 61 

 62 
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Introduction 64 

As many as two hundred studies recognize the South American Cerrado savannas as a global 65 

center of diversity, largely on the basis of its 12,000-plant species which include many 66 

endemics (e.g. Mendonça et al. 2008; Brazilian Flora 2016). A likely driver of this high 67 

species richness is the heterogeneity of landscapes found within this region (Felfili et al. 68 

2005a; Mendonça et al. 2008). While the importance of this biodiversity has been recognized 69 

for at least two decades (e.g., Ratter et al. 1997; Silva and Bates 2002; Klink and Machado 70 

2005; Kier et al. 2005; Silva et al. 2006; BFG 2015), the importance of the Cerrado for 71 

ecosystem services such as carbon storage and hence climate mitigation is less appreciated 72 

(Grace et al. 2006), and the number and size of conservation units are still insufficient to 73 

avoid biodiversity losses (Françoso et al. 2015). In addition to establishing a more complete 74 

network of conservation areas covering the whole region, Bridgewater et al. (2004) also 75 

recommended a complementary regional focus to guarantee the adequate protection of 76 

geographical variations in species. Less than half the two million square kilometers originally 77 

occupied by the Cerrado are now intact (Sano et al. 2010; Lahsen et al. 2016); thus, 78 

understanding the distribution of remaining species diversity and carbon stocks within this 79 

region represents an urgent challenge for its conservation. 80 

 Most biodiversity and ecosystem ecology work in the Cerrado has focused on the core 81 

region, often relatively close to major population and academic centers such as Brasília 82 

(Federal District). The greatest research deficits lie well to the north and west of here 83 

(Miranda et al. 2014). In particular, while an extensive and complex transition exists between 84 

the Cerrado and the Amazon Forest (Ratter et al. 1973; Marimon et al. 2006, 2014), no study 85 

has yet compared the transitional vegetation with that of the core region using the 86 

standardized, fixed-area and quantitative inventory protocols required for a robust analysis of 87 

most ecosystem properties. Indeed, there has been little large-scale evaluation of structural 88 



ecosystem-level properties at all across the Cerrado. In particular, for the key parameters of 89 

tree size, basal area and biomass—and hence above-ground carbon storage—the only studies 90 

we are aware of that included transition zone sites were based on only one or two sites. Yet, 91 

taking the published evidence together (Felfili et al. 1992; Castro and Kauffman 1998; 92 

Marimon-Junior and Haridasan 2005; Kunz et al. 2009; Marimon et al. 2014), it appears that 93 

the trees of the savanna formations in the Cerrado-Amazonia Transition might have greater 94 

basal area or biomass than similar formations in the core region of the Cerrado. 95 

Understanding how above-ground biomass varies among different areas of Cerrado and how 96 

this parameter responds to environmental and geographic factors will help reduce 97 

uncertainties in estimating carbon stocks and may contribute to greater reliability in 98 

conservation policies formulation. Forest biomass, for example, may be partly driven by 99 

climatic factors, such as precipitation and temperature (Silvertown et al. 1994; Larjavaara and 100 

Muller-Landau 2011), and topography, through its effects on water table levels (Fonseca and 101 

Silva Júnior 2004). Yet, this correlation may sometimes be weak and dependent on 102 

vegetation type (Stegen et al. 2011), while for the Cerrado core region the above-ground 103 

biomass of typical cerrado species may even be negatively correlated with precipitation 104 

(Miranda et al. 2014). 105 

 More generally, there are reasons to expect transition and core regions to differ 106 

ecologically beyond considerations of mean climate conditions. For example, the transition 107 

can have suboptimal environmental conditions relative to the core of the adjacent 108 

ecosystems, potentially reducing species richness (van der Maarel 1990). For similar reasons, 109 

the center-periphery hypothesis predicts that, due to harsher environmental conditions, 110 

peripheral populations should be smaller, less abundant and more fragmented, resulting in 111 

reduced demographic performance and genetic variation (Pironon et al. 2016). This would 112 

lead to the communities at the core being more stable and structurally distinct, while the more 113 



unstable and fluctuating environments at the transition select for species and genotypes able 114 

to tolerate more variable conditions (Hardie and Hutchings 2010). Alternatively, Kark and 115 

van Rensburg (2006) suggested that precisely because populations in transitional regions are 116 

likely to include a wide range of taxa adapted to environmental instability, this would in fact 117 

result in them having greater species richness, and the potential to become centers for 118 

speciation. 119 

These intriguing but conflicting viewpoints emphasize the potential existence of 120 

different patterns of diversity within the same biome, which need to be considered to develop 121 

effective conservation measures. In the specific case of the Cerrado, the picture remains 122 

unclear with respect to large-scale diversity patterns. Some studies have suggested that the 123 

core region of the Cerrado has relatively high species richness, due to its proximity to the 124 

center of species dispersal, whereas more peripheral regions are likely to be poorer in species 125 

despite the influence of adjacent biomes (Eiten 1972; Fernandes and Bezerra 1990; Rizzini 126 

1997; Castro et al. 1999). However, others have taken the view that the Cerrado-Amazonia 127 

Transition should have greater species richness than the core region, driven by their 128 

proximity to Amazonia (Ratter et al. 1973, 2003; Felfili et al. 2002; Marimon et al. 2006, 129 

2014). In parallel to the gap in Cerrado center–periphery studies noted above, what has been 130 

lacking so far is an evaluation of basic patterns of tree diversity using adequately replicated 131 

and fully standardized quantitative inventories across the biome. 132 

 While a better understanding of the distribution of plant diversity and biomass, and 133 

their environmental drivers across the Cerrado is necessary for adequate conservation 134 

planning, evaluating the diversity-biomass relationship itself is also important, both for the 135 

mitigation of climate change and for biodiversity conservation. A positive diversity-biomass 136 

relationship would indicate useful synergies between the goals of biodiversity protection and 137 

climate protection, while a negative one implies that difficult trade-offs become necessary 138 



(Gardner et al. 2012). Several experimental studies elsewhere show that enhanced plant 139 

diversity can promote higher productivity and biomass, via mechanisms that include niche 140 

partitioning and species interactions that allow diverse communities to exploit resources 141 

more efficiently (e.g. Cardinale et al. 2012; Ruiz-Benito et al. 2014). However, within 142 

savanna ecosystems the covariation between ecosystem diversity and carbon properties is 143 

largely unstudied. Therefore, whether such mechanisms and relationships matter in the 144 

Cerrado, and any possible implications for conservation strategies, remains unknown. 145 

 Here, to help address these uncertainties in the geographical pattern, environmental 146 

drivers, and potential associations between Cerrado diversity and biomass, we conduct a 147 

large-scale analysis of these properties using distributed and standardized fixed-area 148 

quantitative ecological sampling plots. First, we investigate whether or not the structure and 149 

diversity of arboreal vegetation of the typical cerrado physiognomy (sensu Ribeiro and 150 

Walter 2008, a mixed arboreal-shrub vegetation with cover up to 50%) varies significantly 151 

between the Cerrado-Amazonia Transition and the core region. We then set out to evaluate 152 

the effects of potential climate drivers on typical cerrado structure, and the potential 153 

interaction between biomass and diversity. Our working hypotheses are (i) that the typical 154 

cerrado vegetation of the Cerrado-Amazonia Transition has greater basal area, biomass, and 155 

species diversity than at the core region, (ii) that biomass is influenced by climatic factors, 156 

such as precipitation and temperature, and (iii)  that biomass is positively associated with 157 

diversity, independently of the potential influences of climate on biomass. 158 

 159 

Material and methods 160 

Study areas 161 

We used data from standardized floristic and phytosociological surveys conducted across the 162 

central portion of the Cerrado (core area – CA) and the Cerrado-Amazonia Transition (TR), 163 



i.e., the ecotone between the two largest biomes in South America (Fig. 1, Table S1). We 164 

used a zone of 150 km from the line that delimits the Cerrado and Amazonia to define the TR 165 

(IBGE 2004; Ivanauskas et al. 2008). We analyzed data from 39 permanent one-hectare plots 166 

installed in typical cerrado (cerrado stricto sensu) vegetation, 21 located in the TR and 18 in 167 

the CA (Fig. 1). We established plots in conservation units or in legal reserves of private 168 

properties in the Brazilian Federal District (CA), the Brazilian states of Mato Grosso (TR), 169 

Tocantins (CA), Bahia (CA), Goiás and Minas Gerais (CA), and in the Noel Kempff National 170 

Park in Bolivia (TR) (Fig. 1; Table S1). At each site, we selected the largest and best-171 

preserved remnants of natural vegetation, within which we established plots randomly. In 172 

these areas, mean annual precipitation varied almost two-fold from 1043 mm to 1951 mm, 173 

and mean temperatures also ranged widely, from 19.3 ºC to 26.9 ºC (WorldClim 1.4; Hijmans 174 

et al. 2005). 175 

 176 

Data collection 177 

We identified and measured the diameter and total height of all woody plants with a diameter 178 

of at least 10 cm at a height of 30 cm from the ground, following standard protocols used in 179 

the Amazon forest (Phillips et al. 2010) and Cerrado (Felfili et al. 2005b). We identified 180 

species through comparison with voucher material available in herbaria, and consultation 181 

with specialists. The nomenclature was based on APG III (2009) and we confirmed the 182 

species names and synonymies using the Brazilian Flora (2016), with the flora package in the 183 

R environment (R Core Team 2018). We deposited botanical specimens in the permanent 184 

collections of Herbário NX (UNEMAT – Nova Xavantina campus, MT), Herbário UB 185 

(University of Brasília), Herbário IBGE (Brazilian Institute of Geography and Statistics), 186 

Herbário CEN (Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF) and Herbario 187 

del Oriente Boliviano (USZ). 188 



 For each plot we calculated tree density (individuals/ha), mean tree height (m), mean 189 

tree diameter (cm), total basal area (m2.ha-1) and total above-ground biomass (Mg.ha-1), 190 

which were used as structural parameters of the vegetation. We estimated tree height from 191 

tree diameter for 10 of the TR plots using the model: 192 ܪ ൌ ܽ ൈ ൫ͳ െ ݁ିൈ൯, 193 

where a, b and c are parameters of model and D is the tree diameter (Feldpausch et al. 2012). 194 

To assess the adequacy of this model, we compared height measurements from 3657 trees 195 

collected in the field with their estimated heights. The correlation between the field data and 196 

estimated heights was significant (r = 0.59, p < 0.01). We calculated above-ground biomass 197 

(hereafter biomass) from tree diameter using the Schumacher-Hall model: 198 ܻ ൌ  199 ,ߝఉమܪఉభܦߚ

where く0, く1, く2 are model parameters, D is tree diameter (at 30 cm from the ground), H is 200 

tree height and  is the random error term (Schumacher and Hall 1933), with parameter 201 

values developed specifically for species of the typical cerrado physiognomy (く0 = 0.03047, 202 

く1 = 2.27159, く2 = 0.89748; Rezende et al. 2006). 203 

 For each plot, we calculated species richness, Shannon information index (H’) 204 

(Shannon 1948), Fisher’s log series  (Fisher et al. 1943) and Pielou’s evenness (J’) (Pielou 205 

1969), which were used as diversity parameters (Magurran 2004). We also calculated, for 206 

each plot, the species richness rarefied to the same number of individuals in the smallest 207 

sample, i.e., 169 individuals based on the plot with the smallest number of trees (Hurlbert 208 

1971). All diversity parameters were calculated with the package vegan (Oksanen et al. 209 

2017). 210 

 211 

Statistical analyses 212 



To evaluate associations within structural and diversity parameters, we used the Pearson 213 

correlation coefficient. We assessed differences between CA and TR in structural and 214 

diversity parameters of the vegetation using boxplots and t-tests and, when such differences 215 

existed, we used Bayesian model averaging to identify the most important predictors of the 216 

two regions. In this analysis, structural and diversity parameters were used as explanatory 217 

variables and region (CA and TR) as the response variable. Bayesian model averaging, an 218 

extension of the usual Bayesian inference methods, models both parameter and model 219 

uncertainty using Bayes’ theorem to produce parameter and model posteriors and, thus, 220 

allows for model selection by full enumeration of the model space when the number of 221 

predictors is not large (Hoeting et al. 1999; Fragoso et al. 2018). We conducted Bayesian 222 

model averaging with the BMS package (Zeugner and Feldkircher 2015). 223 

 To assess differences in the total (regional) pool of species between CA and TR, we 224 

built individual-based and sample-based species accumulation curves (Gotelli and Colwell 225 

2001). Further, to account for unseen species in our collection of sampled plots, we used 226 

abundance-based and incidence-based non-parametric estimators of species richness (Colwell 227 

and Coddington 1994; O’Hara 2005). Abundance-based estimators (Chao1 and ACE) were 228 

applied to the total counts of species in each region (CA vs. TR), while incidence-based 229 

estimators (Chao, Jacknife1, Jacknife2 and Bootstrap) were applied to the species frequencies 230 

in the plots for each region. Species accumulation curves and non-parametric estimators were 231 

calculated with the vegan package (Oksanen et al. 2017). 232 

 To investigate the relationships between biomass, diversity and climate, we used a 233 

modification of Bayesian model averaging to address model uncertainty in the presence of 234 

spatial autocorrelation, due to the inherent spatial dependencies among the observations 235 

(Legendre 1993). In this analysis, the spatial dependencies among observations are removed 236 

through a semiparametric spatial filtering approach based on selected eigenvectors extracted 237 



from the spatial weight matrix (Tiefelsdorf and Griffith 2007). Considering the important 238 

effects that uncertainty in the type of spatial weight matrix (neighborhood relationships) can 239 

have on model parameter estimates, the spatial Bayesian model averaging method addresses 240 

both the uncertainty over model specification and the uncertainty regarding the choice of 241 

neighborhood relationships in the spatial regression model (Cuaresma and Feldkircher 2013). 242 

We implemented spatial Bayesian model averaging using package spatBMS (Feldkircher 243 

2010), using 106 iterations, 105 burn-in draws, the reversible-jump model-sampler algorithm, 244 

and default settings for the other parameters. We used eight different spatial weight 245 

matrices—k nearest-neighbors (k = 1, 2, 4 and 6), Delaunay’s triangulation, Gabriel graph, 246 

relative neighbor graph, and sphere of influence graph—built with package spdep (Bivand et 247 

al. 2013, Bivand and Piras 2015). To assess the adequacy of the spatial filtering, we 248 

compared P-values of the Moran’s I (Moran 1950ab) test for spatial autocorrelation obtained 249 

from the 100 best models versus 100 ordinary least-squares models using the same 250 

predictors. 251 

 In the spatial Bayesian model averaging analysis, we used biomass as the response, 252 

and diversity and climate parameters as predictors. Prior to analysis, we selected diversity 253 

parameters based on a variance inflation factor (VIF) maximum threshold score of 4 (Quinn 254 

and Keough 2002), using package usdm (Naimi et al. 2014). This resulted in only species 255 

richness and Pielou’s evenness being retained for analysis (results not shown). Further, we 256 

incorporated tree density and the distance from each plot to the line separating Amazonia 257 

from the Cerrado (IBGE 2004) as additional predictors, to control for any effects these 258 

parameters might have on biomass. We also ran a bivariate regression for both regions 259 

combined (CA and TR) to evaluate the relationship between biomass and climate parameters. 260 

The climate parameters consisted of temperature and precipitation, obtained from WorldClim 261 



1.4, with a resolution of 30 s (Hijmans et al. 2005) and edited in the raster package (R Core 262 

Team 2018). 263 

One TR plot (TR16 – Table S1), located within a protected area, had exceptionally high 264 

biomass (outlier) possibly due to the long-term protection from disturbances such as fire. The 265 

vegetation in this area is becoming denser and shifting from a savanna-like into a woodland 266 

physiognomy (Morandi et al. 2016), even though the habitat is still clearly consistent with 267 

that of the typical cerrado (Marimon-Junior and Haridasan 2005; Marimon et al. 2014). We 268 

retained this plot because it demonstrates the importance and effect of the establishment of 269 

protected areas but, to avoid potentially undesirable effects, we removed it from all 270 

regression analyses involving biomass. 271 

 272 

Results 273 

Vegetation structure 274 

Summaries of vegetation structure parameters from each plot are in Table S2. Overall, the 275 

strongest correlations were between tree basal area vs. biomass, followed by density vs. 276 

biomass (Fig. S1). Tree height and total biomass were significantly higher in TR plots (Table 277 

1, Fig. S2). There were no differences between CA and TR plots in tree density, diameter and 278 

basal area (Table 1, Fig. S2). Bayesian model averaging indicated that, by and large, tree 279 

height was the best predictor of CA and TR plots: it had the largest standardized coefficient, 280 

with a 95% credibility interval that did not include zero, and the largest posterior inclusion 281 

probability (Table 2). Further, in all models containing height its coefficient was positive, 282 

indicating larger values in the TR, and the top model, including just height, concentrated 26% 283 

of the posterior model probabilities (Fig. 2). The remaining predictors had much lower 284 

standardized coefficients and posterior inclusion probabilities. The second-best model, 285 

including height and diameter, concentrated an additional 21% of the posterior model 286 



probabilities, with the contribution of remaining models being much smaller (Fig. 2). In all 287 

but one model containing diameter, its coefficient was negative. Biomass, which had the 288 

second largest standardized coefficient, behaved similarly with a negative coefficient in all 289 

but one model (Table 2, Fig. 2). This indicates that, after accounting for differences in height, 290 

tree diameter and biomass are smaller in TR plots. 291 

 292 

Vegetation diversity 293 

We recorded 233 species in all plots combined, with 177 in the CA plots and 172 in the TR 294 

plots. Summaries of vegetation diversity parameters from each plot are in Table S2. The 295 

individual-based and sample-based species accumulation curves indicated that the CA has a 296 

larger species pool than the TR (Fig. 3). Likewise, all abundance-based and incidence-based 297 

non-parametric estimators indicated larger species richness in the CA (Table S3). Except for 298 

Pielou’s evenness (J’), the correlations between all diversity parameters were high (Fig. S3). 299 

There were no differences between CA and TR plots in tree diversity parameters (Table 1, 300 

Fig. S4). Overall, these results indicate higher regional diversity in the CA, but no differences 301 

in local (plot) diversity between CA and TR. 302 

 303 

Relationships between biomass, diversity and climate 304 

The spatial Bayesian model averaging analysis indicated that the spatial weight matrix based 305 

on the Gabriel graph had the highest posterior model probability (48.3%). By and large, tree 306 

density was the single best predictor of plot biomass: it had the largest standardized 307 

coefficient, with a 95% credibility interval that did not include zero, and the largest posterior 308 

inclusion probability (Table 3). In all models containing density, its coefficient was positive 309 

and the top model, including just density, concentrated 21% of the posterior model 310 

probabilities (Fig. 4). The remaining predictors had much lower standardized coefficients and 311 



posterior inclusion probabilities. The second-best model, including density, richness, and 312 

evenness, concentrated an additional 17% of the posterior model probabilities, with the 313 

contribution of remaining models being much smaller (Fig. 4A). In all models containing 314 

species richness, the second-best predictor, its coefficient was negative (Table 3, Fig. 4A). 315 

The importance of the remaining predictors was much smaller. The incorporation of 316 

eigenvectors in the analysis successfully removed the spatial autocorrelation from the 317 

regression residuals (Fig. 4B). Summing up, the results indicate that after accounting for 318 

differences in density, species richness and biomass tend to be negatively correlated in the 319 

study plots. The results of bivariate regression indicated that, when evaluated separately, 320 

temperature is a good positive predictor of the biomass (r2 = 0.21, p < 0.01; Fig. S5). 321 

 322 

Discussion 323 

We found that plots in typical cerrado vegetation of the Cerrado-Amazonia Transition 324 

(TR) had much greater biomass (58% more) than those of the core area (CA) of the Cerrado. 325 

By contrast, species richness and diversity are similar between the TR and CA. We also find 326 

that for typical cerrado trees there is no systematic relationship between species diversity and 327 

biomass. Thus, our first hypothesis, which suggested that the cerrados of the TR have greater 328 

tree size and ecosystem biomass and greater species diversity than the CA cerrados, was 329 

partly corroborated, given that only the structural variables differed as predicted. Our second 330 

hypothesis was supported, given that the climatic variables predict biomass. The species 331 

diversity-biomass relationship was weak and, if anything, negative, meaning that the third 332 

hypothesis was rejected. These findings are discussed in more detail below, together with an 333 

assessment of the implications for conservation. 334 

 335 

Structure 336 



The biomass and tree height in typical cerrado plots in the transition (TR) were all 337 

significantly greater than those recorded in the core area (CA) and in previous studies spread 338 

in the Cerrado biome (Castro and Kauffman 1998; Vale and Felfili 2005; Rezende et al. 339 

2006; Paiva et al. 2011; Miranda et al. 2014). Several small-scale (1 hectare) local studies in 340 

single sites within the TR had already indicated that the cerrados of this zone may have 341 

greater basal area than those of the more central regions of the Cerrado biome (Felfili et al. 342 

2002; Marimon-Junior and Haridasan 2005; Kunz et al. 2009; Marimon et al. 2014). 343 

However, this is the first time that a biome-scale study, which compares different regions 344 

directly with multiple, replicated plots, has detected such a pattern. The factors that affect the 345 

variation in biomass are discussed below. 346 

From a conservation perspective, the clear structural differences between TR and CA 347 

cerrados are a new find, which has important implications. While the vegetation is defined as 348 

typical cerrado (Ribeiro and Walter 2008) in both cases, the unique structural characteristics 349 

found in each region should be considered for the development of habitat management 350 

practices. In other words, a conservation unit that protects typical cerrado in the core area 351 

will likely not be representative of the same physiognomy in the Cerrado-Amazonia 352 

Transition. This reinforces the position of Primack and Rodrigues (2001), who argued that 353 

conservation units should encompass physiognomies that are representative of environments 354 

on a wide geographic scale. In the specific case of the Cerrado-Amazonia Transition, the 355 

region also coincides with that of the ‘arc of deforestation’ (Fearnside 2005; Marimon et al. 356 

2014), where the landscape is dominated by agricultural frontiers, reinforcing the urgent need 357 

for the establishment of conservation units in this big region. In this context, the maintenance 358 

of private reserves is also an important strategy to conserve portions of cerrado along its wide 359 

geographic distribution. 360 



The maps available on the site of the Mato Grosso State Environment Secretariat 361 

(SEMA: http://www.sema.mt.gov.br/) show that the unique state conservation unit of the TR 362 

that include Cerrado vegetation are all part of Mortes-Araguaia river basin, which is subject 363 

to seasonal flooding (Marimon et al. 2015). In the Araguaia State Park for example, the 364 

predominant physiognomy is the murundus grassland, in which patches of typical cerrado are 365 

found only on the higher terrain, which is free of seasonal flooding. Throughout the state 366 

there is no fully protected area within a 200 km distance of the established limit between the 367 

Cerrado and Amazon biomes (IBGE 2016) in which the predominant vegetation is typical 368 

cerrado not subject to seasonal flooding (SEMA 2016). Given that TR cerrados are 369 

structurally different from those found in the CA, it is important to establish typical cerrado 370 

conservation units within the non-flooded areas of the TR. 371 

 372 

Species diversity 373 

While several previous studies have indicated that the typical cerrados of the TR have 374 

greater species diversity per unit area (alpha diversity) than those of the core area (Felfili et 375 

al. 2002; Ratter et al. 2003; Bridgewater et al. 2004), this was clearly not the case in our 376 

study in which well replicated, quantitative ecological sampling was conducted across both 377 

TR and CA. We conclude that tree species diversity does not vary notably between the 378 

central and outer regions of the Cerrado, even in the TR, where the contribution of the 379 

Amazonian flora increases (Eiten 1972; Ratter et al. 1973, 2003; Castro et al. 1999; Felfili et 380 

al. 2002; Bridgewater et al. 2004; Marimon-Junior and Haridasan 2005). 381 

In a recent study it was stated that there is a greater overlap of species in the central 382 

portion of the Cerrado, which is reflected in higher species richness in the core area than in 383 

the border (Françoso et al. 2016). However, that study may have been influenced by 384 

sampling gaps, as the TR was under-represented. In addition, the above study was based on 385 



binary presence-absence data, which may not be sufficiently robust given that population size 386 

is an important aspect of species diversity, and a fundamental parameter for the development 387 

of conservation measures (Felfili et al. 2005a; Mews et al. 2014). 388 

While our results indicate that alpha diversity did not vary between the CA and TR, there 389 

is a suggestion that beta diversity was higher in the CA, possibly due to the more stable 390 

climate in this area (Werneck et al. 2012) which would be reflected in increased niche 391 

specialization (Moldenke 1975). Even so, neither our study nor previous work using different 392 

methods (Eiten 1972; Fernandes and Bezerra 1990; Rizzini 1997; Castro et al. 1999) strongly 393 

suggests that the TR is relatively species-poor or less diverse than the central area of the 394 

Cerrado. Marimon et al. (2014) observed that the vegetation of the transition zone, in 395 

addition to being hyperdynamic, is in disequilibrium, and Werneck et al. (2012) suggested 396 

that the lower diversity in the transition zone may reflect this instability. However, the 397 

instability normally observed in ecotones (e.g. van der Maarel 1990; Werneck et al. 2012; 398 

Pironon et al. 2016) does not appear to have affected tree species richness and diversity in the 399 

TR. For all these reasons, it is essential to consider both the TR and CA when designing 400 

conservation units, to guarantee the preservation of intrinsic vegetation properties of each 401 

region. As agricultural frontiers are still rapidly advancing within the TR (Marimon et al. 402 

2014), the complete absence of conservation units in typical cerrados is a significant concern. 403 

 404 

Determinants of biomass variation 405 

In our study, tree density was the most important predictor of biomass variation. In other 406 

studies, precipitation and temperature were determinants of biomass in South African 407 

savannas (Scholes et al. 2002). In contrast with our results, however, Miranda et al. (2014) 408 

found a negative correlation between biomass and precipitation levels, albeit in an analysis in 409 



which the TR was under-represented. Moreover, none studies referred here has used density 410 

as predictor of biomass. 411 

Miranda et al. (2014) however suggest that biomass was greater in areas with reduced 412 

seasonality, which may also be relevant to the present study, given that TR cerrados are 413 

located in a region where the mean annual precipitation (1659 mm) is approximately 200 mm 414 

(14% – Table S1) higher than that in the CA (1446 mm), and seasonality is less pronounced 415 

(Keller-Filho et al. 2005; Alvares et al. 2013). This reinforces the effect of its proximity to 416 

the Amazon Forest (Felfili et al. 2002; Marimon-Junior and Haridasan 2005; Torello-417 

Raventos et al. 2013), which may impact tree growth. Additionally, if we consider the results 418 

of the bivariate regression models, temperature and precipitation have a direct effect on 419 

biomass, with the TR contributing most to this tendency. 420 

 421 

Diversity-biomass relationships and implications for conservation 422 

We observed no positive diversity vs. biomass relationship across all plots. It is notable that 423 

the lack of correlation between biomass and diversity metrics remains despite the fact that 424 

only biomass is associated with temperature and to precipitation, and this clearly argues 425 

against their being a positive effect of tree species diversity on carbon storage within the 426 

Cerrado. It is interesting to note that these findings parallel a recent report from across the 427 

tropical moist forest biome (i.e., Amazonia, Africa, Southeast Asia), for which there is also 428 

no detectable relationship between community diversity and carbon storage except at the very 429 

smallest scales (0.04 ha) (Sullivan et al. 2017). Torello-Raventos et al. (2013), analyzing the 430 

structural and floristic data from three continents, observed that there is not necessarily a 431 

congruence between floristic and structural groupings for vegetation types in the forest-432 

savanna transition zone. Therefore, to the extent that positive diversity-function mechanisms 433 



and relationships might exist, within the two largest tropical biomes on Earth they do no 434 

translate into a significant effect on carbon storage. 435 

As a practical consequence, it cannot be assumed that efforts made to conserve the 436 

diversity of typical cerrado will have clear co-benefits (cf. Day et al. 2013) for climate 437 

protection, since the areas with higher diversity do not necessarily coincide with those with 438 

highest biomass. According to Gardner et al. (2012), when this relationship is inverse or 439 

nonexistent, as in the case of the Cerrado, then decisions on the conservation of carbon stocks 440 

or species diversity will imply difficult trade-offs for institutions responsible for the 441 

conservation of biodiversity and the reduction of greenhouse gases. For the Cerrado the 442 

implications seem clear—it is necessary to carefully design a biome-wide conservation 443 

network that can protect both high levels of species diversity and also store large stocks of 444 

carbon, and not assume that protection for one purpose automatically guarantees the other. 445 

As we have already argued, there is clearly now a deeply concerning gap in the 446 

protection of TR cerrado. Furthermore, the similar tree species richness and diversity 447 

observed in the typical cerrado of the CA and TR, together with the greater tree heights and 448 

biomass in the TR, are consistent with the notion that populations of transition zones may be 449 

better adapted to environmental instability and impacts, and would be more capable of 450 

persisting through periods of climate change (Kark and van Rensburg 2006), were they to 451 

survive direct removal as part of Brazil’s agricultural revolution. While the high 452 

environmental heterogeneity of the Cerrado (Felfili et al. 2005a; Mendonça et al. 2008; BFG 453 

2015) cannot be overlooked in the planning of the network of conservation units 454 

(Bridgewater et al. 2004), it is clearly vital to increase protection of the TR, threatened as it is 455 

by intense anthropogenic pressures that may provoke the disappearance of this unique and 456 

valuable environment. 457 

 458 
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Figure Captions 699 

 700 

Fig. 1 Geographic location of 39 one-hectare plots of typical cerrado in the core area of the 701 

Cerrado (brown circles) and at the Cerrado-Amazonia Transition (green circles) in South 702 

America. Shading indicates the ranges of Cerrado and Amazonia. Lines represent country 703 

boundaries 704 

 705 

Fig. 2 Bayesian model averaging of vegetation structure parameters for 39 one-hectare plots 706 

of typical cerrado in the core region of the Cerrado and at the Cerrado-Amazonia transition. 707 

The Y-axis contains the predictors of core vs. transition plots, while the X-axis is scaled by 708 

the posterior model probabilities. Colors indicate predictor inclusion in each of the 32 models 709 

assessed (the full set of possible models). Positive coefficients are indicated by blue, negative 710 

coefficients by red, and white indicates non-inclusion of the respective predictor 711 

 712 

Fig. 3 Individual-based (top) and sample-based (bottom) species accumulation curves for 713 

trees from 39 one-hectare plots of typical cerrado in the core region of the Cerrado and at the 714 

Cerrado-Amazonia transition. The continuous lines represent the mean and the shaded areas 715 

the 95% confidence interval 716 

 717 

Fig. 4 Spatial Bayesian model averaging of tree above-ground biomass, diversity and climate 718 

parameters for 39 one-hectare plots of typical cerrado in the core region of the Cerrado and at 719 

the Cerrado-Amazonia transition. Above-ground biomass represents plot totals. Distance to 720 

transition boundary represents linear distance from each plot to the line separating Amazonia 721 

from the Cerrado (IBGE 2004). The Y-axis contains the predictors of total tree above-ground 722 

biomass in plots, while the X-axis is scaled by the posterior model probabilities. Colors 723 

indicate predictor inclusion in each of the 32 models assessed. Positive coefficients are 724 

indicated by blue, negative coefficients by red, and white indicates non-inclusion of the 725 

respective predictor 726 



1 

Table 1 Summary statistics of vegetation structure and diversity parameters for 39 one-hectare plots of typical cerrado in the core region of the 1 

Cerrado and at the Cerrado-Amazonia transition. Values indicate mean ± one standard deviation and t-test statistics. Tree height and diameter 2 

represent plot means, whereas basal area and above-ground biomass represent plot totals. n: number of plots sampled 3 

Parameter Core area (n= 18) Transition (n= 21) t P 

Vegetation structure     

Density (individuals.ha-1) 304.3 ± 71.7 355.5 ± 152.3 -1.372 0.181 

Height (m) 4.5 ± 0.5 5.8 ± 0.5 -8.454 < 0.001 

Diameter (cm) 14.4 ± 0.7 14.9 ± 1.6 -1.155 0.258 

Basal area (m2.ha-1) 5.6 ± 1.7 6.9 ± 3.1 -1.590 0.122 

Above-ground biomass (Mg.ha-1) 20.4 ± 6.5 32.4 ± 16.5 -3.052 0.005 

Vegetation diversity     

Species richness 45.6 ± 11.4 45.6 ± 12.0 -0.004 0.997 

Rarefied species richness 37.4 ± 7.3 37.0 ± 8.3 0.162 0.872 

Shannon information index (H’) 3.0 ± 0.4 3.1 ± 0.4 -0.945 0.351 

Fisher’s log-series  15.3 ± 4.5 14.4 ± 4.3 0.641 0.525 

Pielou’s evenness (J’) 0.80 ± 0.07 0.83 ± 0.05 -1.606 0.117 
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1 

Table 2 Bayesian model averaging of vegetation structure parameters for 39 one-hectare plots of typical cerrado in the core region of the 1 

Cerrado and at the Cerrado-Amazonia transition. PIP: posterior inclusion probabilities, i.e., sum of posterior model probabilities for all models 2 

wherein a predictor was included; PostMean: standardized coefficients averaged over all models; PostSD: standard deviations of standardized 3 

coefficients; CondPosSign: sign certainty, i.e., posterior probability of a positive coefficient expected value conditional on inclusion; 95% 4 

PostCI: 95% credibility interval of the posterior probability distribution. Tree height and diameter represent plot means, whereas basal area and 5 

above-ground biomass represent plot totals 6 

Parameter PIP PostMean PostSD CondPosSign 95% PostCI 

Height (m) 1.000 0.874 0.161 1.000 0.3691 – 0.7576 

Diameter (cm) 0.386 -0.067 0.129 0.067 -0.1642 – 0.0798 

Density (individuals.ha-1) 0.301 0.094 0.222 1.000 -0.0005 – 0.0038 

Above-ground biomass (Mg.ha-1) 0.274 -0.142 0.395 0.136 -0.0743 – 0.0088 

Basal area (m2.ha-1) 0.235 0.035 0.365 0.520 -0.1935 – 0.3599 
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1 

Table 3 Spatial Bayesian model averaging of tree above-ground biomass versus diversity and climate parameters for 39 one-hectare plots of 1 

typical cerrado in the core region of the Cerrado and at the Cerrado-Amazonia transition. PIP: posterior inclusion probabilities, i.e., sum of 2 

posterior model probabilities for all models wherein a predictor was included; PostMean: standardized coefficients averaged over all models; 3 

PostSD: standard deviations of standardized coefficients; CondPosSign: sign certainty, i.e., posterior probability of a positive coefficient 4 

expected value conditional on inclusion; 95% PostCI: 95% credibility interval of the posterior probability distribution. Above-ground biomass 5 

represents plot totals. Distance to transition boundary represents linear distance from each plot to the line separating Amazonia from the Cerrado 6 

(IBGE 2004). 7 

Parameter PIP PostMean PostSD CondPosSign 95% PostCI 

Density (individuals.ha-1) 1.000 0.697 0.111 1.000 0.4914 – 0.9210 

Species richness 0.462 -0.133 0.171 0.000 -0.5038 – 0.0910 

Pielou’s evenness (J’) 0.273 0.037 0.084 0.916 -0.0628 – 0.2583 

Temperature (ºC) 0.198 0.026 0.079 1.000 -0.1237 – 0.2532 

Precipitation (mm) 0.174 0.009 0.052 0.816 -0.1109 – 0.1772 

Distance to transition boundary (km) 0.148 0.002 0.057 0.485 -0.1660 – 0.2192 

 8 

Table 3 Click here to download Table Table 3-Corrected.docx 

http://www.editorialmanager.com/bioc/download.aspx?id=180216&guid=955218a3-364e-49f5-9033-cf44fe21fc6e&scheme=1
http://www.editorialmanager.com/bioc/download.aspx?id=180216&guid=955218a3-364e-49f5-9033-cf44fe21fc6e&scheme=1


Amazonia

Cerrado

Core

Transition

70ºW 60ºW 50ºW 40ºW

5ºN

0º

5ºS

10ºS

15ºS

20ºS

25ºS

30ºS

Figure 1 Click here to download Figure Figure 1.pdf 

http://www.editorialmanager.com/bioc/download.aspx?id=180209&guid=d398c0d4-e7ba-4226-93f0-a3aad1c1eff3&scheme=1
http://www.editorialmanager.com/bioc/download.aspx?id=180209&guid=d398c0d4-e7ba-4226-93f0-a3aad1c1eff3&scheme=1


Cumulative Model Probabilities

0 0.26 0.47 0.57 0.68 0.77 0.86 0.94 1

Basal area

Biomass

Density

Diameter

Height

Figure 2 Click here to download Figure Figure 2.pdf 

http://www.editorialmanager.com/bioc/download.aspx?id=180210&guid=491e0f1d-95b8-46c8-8e5a-1d4c5c81a0e7&scheme=1
http://www.editorialmanager.com/bioc/download.aspx?id=180210&guid=491e0f1d-95b8-46c8-8e5a-1d4c5c81a0e7&scheme=1


0 2000 4000 6000 8000

50

100

150

200

Individuals

S
p
e
c
ie
s

0 5 10 15 20

0

50

100

150

200

Plots

S
p
e
c
ie
s

Core
Transition

Figure 3 Click here to download Figure Figure 3.pdf 

http://www.editorialmanager.com/bioc/download.aspx?id=180211&guid=20d66657-9383-4373-98f1-2488a46e1bfa&scheme=1
http://www.editorialmanager.com/bioc/download.aspx?id=180211&guid=20d66657-9383-4373-98f1-2488a46e1bfa&scheme=1


Cumulative Model Probabilities

0 0.22 0.39 0.49 0.63 0.72 0.83 0.94 1.04 1.13

Distance to

transition

boundary

Precipitation

Temperature

Pielou�s

evenness

Richness

Density

OLS regression Eigenvector augmented

regression

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
o
ra

n
's

 t
e
s
t 

P
-v

a
lu

e

 

A B

Figure 4 Click here to download Figure Figure 4.pdf 

http://www.editorialmanager.com/bioc/download.aspx?id=180212&guid=d12709f0-3d25-4760-a595-33a1f4f1631b&scheme=1
http://www.editorialmanager.com/bioc/download.aspx?id=180212&guid=d12709f0-3d25-4760-a595-33a1f4f1631b&scheme=1

