171 research outputs found

    Strong signatures of selection in the domestic pig genome

    Get PDF
    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back and an increased number of vertebrae. The three loci were associated with the NR6A1, PLAG1, and LCORL genes. The latter two have repeatedly been associated with loci controlling stature in other domestic animals and in humans. Most European domestic pigs are homozygous for the same haplotype at these three loci. We found an excess of derived nonsynonymous substitutions in domestic pigs, most likely reflecting both positive selection and relaxed purifying selection after domestication. Our analysis of structural variation revealed four duplications at the KIT locus that were exclusively present in white or white-spotted pigs, carrying the Dominant white, Patch, or Belt alleles. This discovery illustrates how structural changes have contributed to rapid phenotypic evolution in domestic animals and how alleles in domestic animals may evolve by the accumulation of multiple causative mutations as a response to strong directional selection

    Morphological variation in a secondary contact between divergent lineages of brown trout (Salmo trutta) from the Iberian Peninsula

    Get PDF
    The aim of this study was to analyze the morphological variation of brown trout (Salmo trutta) in the Duero basin, an Atlantic river basin in the Iberian Peninsula, where a spatial segregation of two divergent lineages was previously reported, based on isozyme, microsatellite and mtDNA data. In these studies, two divergent pure regions (Pisuerga and Lower-course) and several hybrid populations between them were identified. Morphological variation was evaluated in 11 populations representative of the genetic differentiation previously observed in the Duero basin, using multivariate analysis on 12 morphometric and 4 meristic traits. A large differentiation between populations was observed (interpopulation component of variance: 41.8%), similar to that previously detected with allozymes and microsatellites. Morphometric differentiation was also reflected by the high classification success of pure and hybrid individuals to their respective populations, using multivariate discriminant functions (94.1% and 79.0%, respectively). All multivariate and clustering analyses performed demonstrated a strong differentiation between the pure regions. The hybrid populations, though showing large differentiation among them, evidenced an intermediate position between the pure samples. Head and body shape traits were the most discriminant among the morphometric characters, while pectoral rays and gillrakers were the most discriminant among the meristic traits. These results confirmed the high divergence of the brown trout from the Duero basin and suggest some traits on which selection could be acting to explain the spatial segregation observed

    Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay

    Get PDF
    The European wild boar Sus scrofa was first introduced into Uruguay, in southern South America during the early decades of the last century. Subsequently, and starting from founder populations, its range spread throughout the country and into the neighbouring Brazilian state Rio Grande do Sul. Due to the subsequent negative impact, it was officially declared a national pest. The main aim in the present study was to provide a more comprehensive scenario of wild boar differentiation in Uruguay, by using mtDNA markers to access the genetic characterization of populations at present undergoing rapid expansion. A high level of haplotype diversity, intermediate levels of nucleotide diversity and considerable population differentiation, were detected among sampled localities throughout major watercourses and catchment dams countrywide. Phylogenetic analysis revealed the existence of two different phylogroups, thereby reflecting two deliberate introduction events forming distantly genetic lineages in local wild boar populations. Our analysis lends support to the hypothesis that the invasive potential of populations emerge from introgressive hybridization with domestic pigs. On taking into account the appreciable differentiation and reduced migration between locales in wild boar populations, management strategies could be effective if each population were to be considered as a single management unit

    Origin and History of Mitochondrial DNA Lineages in Domestic Horses

    Get PDF
    Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability

    Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Get PDF
    Genomic structure in a global collection of domesticated sheep reveals a history of artificial selection for horn loss and traits relating to pigmentation, reproduction, and body size

    The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    Get PDF
    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global FST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change

    The Origin and Genetic Variation of Domestic Chickens with Special Reference to Junglefowls Gallus g. gallus and G. varius

    Get PDF
    It is postulated that chickens (Gallus gallus domesticus) became domesticated from wild junglefowls in Southeast Asia nearly 10,000 years ago. Based on 19 individual samples covering various chicken breeds, red junglefowl (G. g. gallus), and green junglefowl (G. varius), we address the origin of domestic chickens, the relative roles of ancestral polymorphisms and introgression, and the effects of artificial selection on the domestic chicken genome. DNA sequences from 30 introns at 25 nuclear loci are determined for both diploid chromosomes from a majority of samples. The phylogenetic analysis shows that the DNA sequences of chickens, red and green junglefowls formed reciprocally monophyletic clusters. The Markov chain Monte Carlo simulation further reveals that domestic chickens diverged from red junglefowl 58,000±16,000 years ago, well before the archeological dating of domestication, and that their common ancestor in turn diverged from green junglefowl 3.6 million years ago. Several shared haplotypes nonetheless found between green junglefowl and chickens are attributed to recent unidirectional introgression of chickens into green junglefowl. Shared haplotypes are more frequently found between red junglefowl and chickens, which are attributed to both introgression and ancestral polymorphisms. Within each chicken breed, there is an excess of homozygosity, but there is no significant reduction in the nucleotide diversity. Phenotypic modifications of chicken breeds as a result of artificial selection appear to stem from ancestral polymorphisms at a limited number of genetic loci

    Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa)

    Get PDF
    [EN] Contacts across the Strait of Gibraltar in the Pleistocene have been studied in different research papers, which have demonstrated that this apparent barrier has been permeable to human and fauna movements in both directions. Our study, based on the genetic analysis of wild boar (Sus scrofa), suggests that there has been contact between Africa and Europe through the Strait of Gibraltar in the Late Pleistocene (at least in the last 90,000 years), as shown by the partial analysis of mitochondrial DNA. Cytochrome b and the control region from North African wild boar indicate a close relationship with European wild boar, and even some specimens belong to a common haplotype in Europe. The analyses suggest the transformation of the wild boar phylogeography in North Africa by the emergence of a natural communication route in times when sea levels fell due to climatic changes, and possibly through human action, since contacts coincide with both the Last Glacial period and the increasing human dispersion via the strait.This study was supported by The Emirates Centre for Wildlife Propagation (Morocco). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Soria-Boix, C.; Donat-Torres, MP.; Urios, V. (2017). Contacts in the last 90,000 years over the Strait of Gibraltar evidenced by genetic analysis of wild boar (Sus scrofa). PLoS ONE. 12(7). doi:10.1371/journal.pone.0181929S12
    corecore