243 research outputs found
Monte-Carlo simulations of star-branched polyelectrolyte micelles
The concentration profiles of monomers and counterions in star-branched
polyelectrolyte micelles are calculated through Monte-Carlo simulations, using
the simplest freely-jointed chain model. We have investigated the onset of
different regimes corresponding to the spherical and Manning condensation of
counterions as a function of the strength of the Coulomb coupling. The
Monte-Carlo results are in fair agreement with the predictions of
Self-Consistent-Field analytical models. We have simulated a real system of
diblock copolymer micelles of (sodium-polystyrene-sulfonate)(NaPSS)--
(polyethylene-- propylene)(PEP) with f=54 hydrophilic branches of N=251
monomers at room temperature in salt-free solution and compared the calculated
form factor with our neutron-scattering data.Comment: 14 pages, 20 figure
The Orbit, Mass, and Albedo of Transneptunian Binary 1999 RZ253
We have observed 1999 RZ253 with the Hubble Space Telescope at seven separate
epochs and have fit an orbit to the observed relative positions of this binary.
Two orbital solutions have been identified that differ primarily in the
inclination of the orbit plane. The best fit corresponds to an orbital period,
P=46.263 +0.006/-0.074 days, semimajor axis a=4,660 +/-170 km and orbital
eccentricity e=0.460 +/-0.013 corresponding to a system mass m=3.7 +/-0.4
x10^18 kg. For a density of rho = 1000 kg m^-3 the albedo at 477 nm is p = 0.12
+/-0.01, significantly higher than has been commonly assumed for objects in the
Kuiper Belt. Multicolor, multiepoch photometry shows this pair to have colors
typical for the Kuiper belt with a spectral gradient of 0.35 per 100 nm in the
range between 475 and 775 nm. Photometric variations at the four epochs we
observed were as large as 12 +/-3% but the sampling is insufficient to confirm
the existence of a lightcurve
"TNOs are Cool": A survey of the trans-Neptunian region X. Analysis of classical Kuiper belt objects from Herschel and Spitzer observations
The classical Kuiper belt contains objects both from a low-inclination,
presumably primordial, distribution and from a high-inclination dynamically
excited population. Based on a sample of classical TNOs with observations at
thermal wavelengths we determine radiometric sizes, geometric albedos and
thermal beaming factors as well as study sample properties of dynamically hot
and cold classicals. Observations near the thermal peak of TNOs using infra-red
space telescopes are combined with optical magnitudes using the radiometric
technique with near-Earth asteroid thermal model (NEATM). We have determined
three-band flux densities from Herschel/PACS observations at 70.0, 100.0 and
160.0 m and Spitzer/MIPS at 23.68 and 71.42 m when available. We have
analysed 18 classical TNOs with previously unpublished data and re-analysed
previously published targets with updated data reduction to determine their
sizes and geometric albedos as well as beaming factors when data quality
allows. We have combined these samples with classical TNOs with radiometric
results in the literature for the analysis of sample properties of a total of
44 objects. We find a median geometric albedo for cold classical TNOs of 0.14
and for dynamically hot classical TNOs, excluding the Haumea family and dwarf
planets, 0.085. We have determined the bulk densities of Borasisi-Pabu (2.1
g/cm^3), Varda-Ilmare (1.25 g/cm^3) and 2001 QC298 (1.14 g/cm^3) as well as
updated previous density estimates of four targets. We have determined the
slope parameter of the debiased cumulative size distribution of dynamically hot
classical TNOs as q=2.3 +- 0.1 in the diameter range 100<D<500 km. For
dynamically cold classical TNOs we determine q=5.1 +- 1.1 in the diameter range
160<D<280 km as the cold classical TNOs have a smaller maximum size.Comment: 22 pages, 7 figures Accepted to be published in Astronomy and
Astrophysic
Neptune Trojans and Plutinos: colors, sizes, dynamics, and their possible collisions
Neptune Trojans and Plutinos are two subpopulations of trans-Neptunian
objects located in the 1:1 and the 3:2 mean motion resonances with Neptune,
respectively, and therefore protected from close encounters with the planet.
However, the orbits of these two kinds of objects may cross very often,
allowing a higher collisional rate between them than with other kinds of
trans-Neptunian objects, and a consequent size distribution modification of the
two subpopulations.
Observational colors and absolute magnitudes of Neptune Trojans and Plutinos
show that i) there are no intrinsically bright (large) Plutinos at small
inclinations, ii) there is an apparent excess of blue and intrinsically faint
(small) Plutinos, and iii) Neptune Trojans possess the same blue colors as
Plutinos within the same (estimated) size range do.
For the present subpopulations we analyzed the most favorable conditions for
close encounters/collisions and address any link there could be between those
encounters and the sizes and/or colors of Plutinos and Neptune Trojans. We also
performed a simultaneous numerical simulation of the outer Solar System over 1
Gyr for all these bodies in order to estimate their collisional rate.
We conclude that orbital overlap between Neptune Trojans and Plutinos is
favored for Plutinos with large libration amplitudes, high eccentricities, and
small inclinations. Additionally, with the assumption that the collisions can
be disruptive creating smaller objects not necessarily with similar colors, the
present high concentration of small Plutinos with small inclinations can thus
be a consequence of a collisional interaction with Neptune Trojans and such
hypothesis should be further analyzed.Comment: 15 pages, 9 figures, 6 tables, accepted for publication in A&
"TNOs are Cool": A survey of the trans-Neptunian region VI. Herschel/PACS observations and thermal modeling of 19 classical Kuiper belt objects
Trans-Neptunian objects (TNO) represent the leftovers of the formation of the
Solar System. Their physical properties provide constraints to the models of
formation and evolution of the various dynamical classes of objects in the
outer Solar System. Based on a sample of 19 classical TNOs we determine
radiometric sizes, geometric albedos and beaming parameters. Our sample is
composed of both dynamically hot and cold classicals. We study the correlations
of diameter and albedo of these two subsamples with each other and with orbital
parameters, spectral slopes and colors. We have done three-band photometric
observations with Herschel/PACS and we use a consistent method for data
reduction and aperture photometry of this sample to obtain monochromatic flux
densities at 70.0, 100.0 and 160.0 \mu m. Additionally, we use Spitzer/MIPS
flux densities at 23.68 and 71.42 \mu m when available, and we present new
Spitzer flux densities of eight targets. We derive diameters and albedos with
the near-Earth asteroid thermal model (NEATM). As auxiliary data we use
reexamined absolute visual magnitudes from the literature and data bases, part
of which have been obtained by ground based programs in support of our Herschel
key program. We have determined for the first time radiometric sizes and
albedos of eight classical TNOs, and refined previous size and albedo estimates
or limits of 11 other classicals. The new size estimates of 2002 MS4 and 120347
Salacia indicate that they are among the 10 largest TNOs known. Our new results
confirm the recent findings that there are very diverse albedos among the
classical TNOs and that cold classicals possess a high average albedo (0.17 +/-
0.04). Diameters of classical TNOs strongly correlate with orbital inclination
in our sample. We also determine the bulk densities of six binary TNOs.Comment: 21 pages, 9 figures, accepted for publication in Astronomy and
Astrophysic
Reopening the TNOs Color Controversy: Centaurs Bimodality and TNOs Unimodality
We revisit the Trans-Neptunian Objects (TNOs) color controversy allegedly
solved by Tegler and Romanishin 2003. We debate the statistical approach of the
quoted work and discuss why it can not draw the claimed conclusions, and
reanalyze their data sample with a more adequate statistical test. We find
evidence for the existence of two color groups among the Centaurs. Therefore,
mixing both centaurs and TNOs populations lead to the erroneous conclusion of a
global bimodality, while there is no evidence for two color groups in the TNOs
population alone. We use quasi-simultaneous visible color measurements
published for 20 centaurs (corresponding to about half of the identified
objects of this class), and conclude on the existence of two groups. With the
surface evolution model of Delsanti et al. (2003) we discuss how the existence
of two groups of Centaurs may be compatible with a continuous TNOs color
distribution.Comment: 4 pages, 4 figures, accepted for publication in Astronomy and
Astrophysics Letter
Tohoku-Hiroshima-Nagoya planetary spectra library: A method for characterizing planets in the visible to near infrared
There has not been a comprehensive framework for comparing spectral data from
different planets.Such a framework is needed for the study of extrasolar
planets and objects within the solar system. We have undertaken observations to
compile a library of planet spectra for all planets, some moons, and some dwarf
planets in the solar system to study their general spectroscopic and
photometric natures. During May and November of 2008, we acquired spectra for
the planets using TRISPEC, which is capable of simultaneous three-band
spectroscopy in a wide wavelength range of 0.45 - 2.5 microns with low
resolving power (lambda-over-Delta-lambda is 140 - 360). Patterns emerge from
comparing the spectra. Analyzing their general spectroscopic and photometric
natures, we show that it is possible to distinguish between gas planets, soil
planets and ice planets. These methods can be applied to extrasolar
observations using low resolution spectrography or broad-band filters. The
present planet spectral library is the first library to contain observational
spectra for all of the solar system planets, based on simultaneous observations
in visible and near infrared wavelengths. This library will be a useful
reference for analyzing extrasolar planet spectra, and for calibrating
planetary data sets.Comment: 11 pages, 6 figures, Accepted on 28/08/2009 to appear in Section 10.
Planets and planetary systems of Astronomy and Astrophysic
Dynamics of Collapse of flexible Polyelectrolytes and Polyampholytes
We provide a theory for the dynamics of collapse of strongly charged
polyelectrolytes (PEs) and flexible polyampholytes (PAs) using Langevin
equation. After the initial stage, in which counterions condense onto PE, the
mechanism of approach to the globular state is similar for PE and PA. In both
instances, metastable pearl-necklace structures form in characteristic time
scale that is proportional to N^{4/5} where N is the number of monomers. The
late stage of collapse occurs by merger of clusters with the largest one
growing at the expense of smaller ones (Lifshitz- Slyozov mechanism). The time
scale for this process T_{COLL} N. Simulations are used to support the proposed
collapse mechanism for PA and PE.Comment: 14 pages, 2 figure
TNOs are Cool: A survey of the trans-Neptunian region V. Physical characterization of 18 Plutinos using Herschel PACS observations
We present Herschel PACS photometry of 18 Plutinos and determine sizes and
albedos for these objects using thermal modeling. We analyze our results for
correlations, draw conclusions on the Plutino size distribution, and compare to
earlier results. Flux densities are derived from PACS mini scan-maps using
specialized data reduction and photometry methods. In order to improve the
quality of our results, we combine our PACS data with existing Spitzer MIPS
data where possible, and refine existing absolute magnitudes for the targets.
The physical characterization of our sample is done using a thermal model.
Uncertainties of the physical parameters are derived using customized Monte
Carlo methods. The correlation analysis is performed using a bootstrap Spearman
rank analysis. We find the sizes of our Plutinos to range from 150 to 730 km
and geometric albedos to vary between 0.04 and 0.28. The average albedo of the
sample is 0.08 \pm 0.03, which is comparable to the mean albedo of Centaurs,
Jupiter Family comets and other Trans-Neptunian Objects. We were able to
calibrate the Plutino size scale for the first time and find the cumulative
Plutino size distribution to be best fit using a cumulative power law with q =
2 at sizes ranging from 120-400 km and q = 3 at larger sizes. We revise the
bulk density of 1999 TC36 and find a density of 0.64 (+0.15/-0.11) g cm-3. On
the basis of a modified Spearman rank analysis technique our Plutino sample
appears to be biased with respect to object size but unbiased with respect to
albedo. Furthermore, we find biases based on geometrical aspects and color in
our sample. There is qualitative evidence that icy Plutinos have higher albedos
than the average of the sample.Comment: 18 pages, 8 figures, 8 tables, accepted for publication in A&
Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results
A second large programme (LP) for the physical studies of TNOs and Centaurs,
started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has
recently been concluded. In this paper we present the spectra of these pristine
bodies obtained in the visible range during the last two semesters of the LP.
We investigate the spectral behaviour of the TNOs and Centaurs observed, and we
analyse the spectral slopes distribution of the full data set coming from this
LP and from the literature. We computed the spectral slope for each observed
object, and searched for possible weak absorption features. A statistical
analysis was performed on a total sample of 73 TNOs and Centaurs to look for
possible correlations between dynamical classes, orbital parameters, and
spectral gradient. We obtained new spectra for 28 bodies, 15 of which were
observed for the first time. All the new presented spectra are featureless,
including 2003 AZ84, for which a faint and broad absorption band possibly
attributed to hydrated silicates on its surface has been reported. The data
confirm a wide variety of spectral behaviours, with neutral--grey to very red
gradients. An analysis of the spectral slopes available from this LP and in the
literature for a total sample of 73 Centaurs and TNOs shows that there is a
lack of very red objects in the classical population. We present the results of
the statistical analysis of the spectral slope distribution versus orbital
parameters. In particular, we confirm a strong anticorrelation between spectral
slope and orbital inclination for the classical population. A strong
correlation is also found between the spectral slope and orbital eccentricity
for resonant TNOs, with objects having higher spectral slope values with
increasing eccentricity.Comment: 11 pages, 9 figure
- …