1,934 research outputs found

    Vascular smooth muscle contraction in hypertension

    Get PDF
    Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex interacting systems such as the renin angiotensin aldosterone system (RAAS), sympathetic nervous system, immune activation and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin-myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase (ROCK), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) signaling, reactive oxygen species and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and noncoding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i, not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signaling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension

    Special study: Legal transition programme review

    Get PDF
    This study is an evaluation of the European Bank for Reconstruction and Development's Legal Transition Programme’s activities from 2001-2011, through a review of a sample of 30 legal reform projects and advisory projects in Armenia, Hungary, Mongolia, Russia and Serbia. It was conducted by the Evaluation department in conjunction with three external experts: Professor Douglas Arner (University of Hong Kong), Professor Charles Booth (University of Hawaii) and Professor Gordon Walker (LaTrobe University). Overall the programme was found to be successful due to its compatibility with the Bank’s activities and highly relevant due to its support of the Bank’s investments through contributions to legal improvements. The programme’s projects have made a core contribution to the transition process, influencing domestic policy formulation and contributing to stronger free market economies. The transition impact and sustainability of the programme was found to be excellent.published_or_final_versio

    Free fatty acids link metabolism and regulation of the insulin-sensitizing fibroblast growth factor-21

    Get PDF
    OBJECTIVE—Fibroblast growth factor (FGF)-21 improves insulin sensitivity and lipid metabolism in obese or diabetic animal models, while human studies revealed increased FGF-21 levels in obesity and type 2 diabetes. Given that FGF-21 has been suggested to be a peroxisome proliferator–activator receptor (PPAR) –dependent regulator of fasting metabolism, we hypothesized that free fatty acids (FFAs), natural agonists of PPAR, might modify FGF-21 levels. RESEARCH DESIGN AND METHODS—The effect of fatty acids on FGF-21 was investigated in vitro in HepG2 cells. Within a randomized controlled trial, the effects of elevated FFAs were studied in 21 healthy subjects (13 women and 8 men). Within a clinical trial including 17 individuals, the effect of insulin was analyzed using an hyperinsulinemic-euglycemic clamp and the effect of PPAR activation was studied subsequently in a rosiglitazone treatment trial over 8 weeks. RESULTS—Oleate and linoleate increased FGF-21 expression and secretion in a PPAR-dependent fashion, as demonstrated by small-interfering RNA–induced PPAR knockdown, while palmitate had no effect. In vivo, lipid infusion induced an increase of circulating FGF-21 in humans, and a strong correlation between the change in FGF-21 levels and the change in FFAs was observed. An artificial hyperinsulinemia, which was induced to delineate the potential interaction between elevated FFAs and hyperinsulinemia, revealed that hyperinsulinemia also increased FGF-21 levels in vivo, while rosiglitazone treatment had no effect. CONCLUSIONS—The results presented here offer a mechanism explaining the induction of the metabolic regulator FGF-21 in the fasting situation but also in type 2 diabetes and obesity

    Fasting and postprandial remnant-like particle cholesterol concentrations in obese participants are associated with plasma triglycerides, insulin resistance, and body fat distribution

    Get PDF
    Elevated plasma concentrations of remnant-like particle cholesterol (RLP-C) are atherogenic. However, factors that determine RLP-C are not fully understood. This study evaluates which factors affect RLP-C in the fasting and postprandial state, using multiple regression analyses in a large cohort of lean and obese participants. All participants (n = 740) underwent a test meal challenge containing 95 energy % (en%) fat (energy content 50% of predicted daily resting metabolic rate). Fasting and postprandial concentrations of circulating metabolites were measured over a 3-h period. Obese participants (n = 613) also participated in a 10-wk weight loss program (-2510 kJ/d), being randomized to either a low-fat or a high-fat diet (20-25 vs. 40-45en% fat). Postprandial RLP-C was associated with fasting RLP-C, waist:hip ratio (WHR), HOMA(IR) (homeostasis model assessment index for insulin resistance) (P < 0.001), and age, independently of BMI and gender [adjusted R(2) (adj. R(2)) = 0.70). These factors were also related to fasting RLP-C (P < 0.010), along with gender and physical activity (adj. R(2) = 0.23). The dietary intervention resulted in significantly lower fasting RLP-C concentrations, independently mediated by weight loss, improvements in HOMA(IR), and the fat content of the prescribed diet. However, after inclusion of plasma triglyceride (TG), HDL-cholesterol, and FFA concentrations in the models, HOMA(IR) and WHR no longer significantly predicted fasting RLP-C, although WHR remained a predictor of postprandial RLP-C (P = 0.002). Plasma TG was strongly associated with both fasting and postprandial RLP-C (P < 0.001). In conclusion, plasma RLP-C concentrations are mainly associated with plasma TG concentrations. Interestingly, the high-fat diet was more effective at decreasing fasting RLP-C concentrations in obese participants than the low-fat diet

    Ceruloplasmin is a novel adipokine which is overexpressed in adipose tissue of obese subjects and in obesity-associated cancer cells

    Get PDF
    Obesity confers an increased risk of developing specific cancer forms. Although the mechanisms are unclear, increased fat cell secretion of specific proteins (adipokines) may promote/facilitate development of malignant tumors in obesity via cross-talk between adipose tissue(s) and the tissues prone to develop cancer among obese. We searched for novel adipokines that were overexpressed in adipose tissue of obese subjects as well as in tumor cells derived from cancers commonly associated with obesity. For this purpose expression data from human adipose tissue of obese and non-obese as well as from a large panel of human cancer cell lines and corresponding primary cells and tissues were explored. We found expression of ceruloplasmin to be the most enriched in obesity-associated cancer cells. This gene was also significantly up-regulated in adipose tissue of obese subjects. Ceruloplasmin is the body's main copper carrier and is involved in angiogenesis. We demonstrate that ceruloplasmin is a novel adipokine, which is produced and secreted at increased rates in obesity. In the obese state, adipose tissue contributed markedly (up to 22%) to the total circulating protein level. In summary, we have through bioinformatic screening identified ceruloplasmin as a novel adipokine with increased expression in adipose tissue of obese subjects as well as in cells from obesity-associated cancers. Whether there is a causal relationship between adipose overexpression of ceruloplasmin and cancer development in obesity cannot be answered by these cross-sectional comparisons

    Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study

    Get PDF
    Trunk fat and leg fat have independent and opposite associations with fasting and postload glucose levels: the Hoorn study. Snijder MB, Dekker JM, Visser M, Bouter LM, Stehouwer CD, Yudkin JS, Heine RJ, Nijpels G, Seidell JC; Hoorn study. Institute for Research in Extramural Medicine, VU University Medical Center, Amsterdam, The Netherlands. [email protected] OBJECTIVE: Waist and hip circumferences have been shown to have independent and opposite associations with glucose levels. Waist circumference is positively associated with glucose levels, whereas hip circumference is negatively associated. It is unclear which tissues are involved in the pathophysiological mechanism causing these associations. The main goal was to determine which tissue in the trunk and legs, fat or lean tissue, is associated with measures of glucose metabolism. RESEARCH DESIGN AND METHODS: In 623 participants of the third examination of the Hoorn Study, whole-body dual-energy X-ray absorptiometry was performed to determine fat and lean soft-tissue mass in the trunk and legs. Fasting and 2-h postload glucose levels after 75-g oral glucose tolerance test (OGTT) were determined. After exclusion of known diabetic patients, cross-sectional analyses were performed in 275 men aged 60-87 years (140 with normal glucose metabolism, 92 with impaired glucose metabolism; and 43 with diabetes) and in 281 women (148 with normal glucose metabolism, 90 with impaired glucose metabolism, and 43 with diabetes). RESULTS: Greater trunk fat mass was associated with higher glucose levels after adjustment for age, trunk lean mass, leg lean mass, and leg fat mass. Standardized beta (95% CI) in men were 0.44 (0.25-0.64) for fasting and 0.41 (0.22-0.60) for postload glucose. For women, these values were 0.49 (0.35-0.63) and 0.47 (0.33-0.61), respectively. In contrast, in the same regression models, a larger leg fat mass was associated with lower glucose levels. Standardized beta in men were -0.24 (-0.43 to -0.05) and -0.12 (-0.31 to 0.07) and in women -0.24 (-0.37 to -0.10) and -0.27 (-0.40 to -0.13) for fasting and postload glucose, respectively. In these models, larger leg lean mass was also associated with lower glucose levels but was only statistically significant in men. CONCLUSIONS: If trunk fat is taken into account, accumulation of fat in the legs seems to be protective against a disturbed glucose metabolism, particularly in women. Further research is needed to unravel underlying pathophysiological mechanism

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    TFAP2B influences the effect of dietary fat on weight loss under energy restriction

    Get PDF
    BACKGROUND: Numerous gene loci are related to single measures of body weight and shape. We investigated if 55 SNPs previously associated with BMI or waist measures, modify the effects of fat intake on weight loss and waist reduction under energy restriction. METHODS AND FINDINGS: Randomized controlled trial of 771 obese adults. (Registration: ISRCTN25867281.) One SNP was selected for replication in another weight loss intervention study of 934 obese adults. The original trial was a 10-week 600 kcal/d energy-deficient diet with energy percentage from fat (fat%) in range of 20-25 or 40-45. The replication study used an 8-weeks diet of 880 kcal/d and 20 fat%; change in fat% intake was used for estimation of interaction effects. The main outcomes were intervention weight loss and waist reduction. In the trial, mean change in fat% intake was -12/+4 in the low/high-fat groups. In the replication study, it was -23/-12 among those reducing fat% more/less than the median. TFAP2B-rs987237 genotype AA was associated with 1.0 kg (95% CI, 0.4; 1.6) greater weight loss on the low-fat, and GG genotype with 2.6 kg (1.1; 4.1) greater weight loss on the high-fat (interaction p-value; p = 0.00007). The replication study showed a similar (non-significant) interaction pattern. Waist reduction results generally were similar. Study-strengths include (i) the discovery study randomised trial design combined with the replication opportunity (ii) the strict dietary intake control in both studies (iii) the large sample sizes of both studies. Limitations are (i) the low minor allele frequency of the TFAP2B polymorphism, making it hard to investigate non-additive genetic effects (ii) the different interventions preventing identical replication-discovery study designs (iii) some missing data for non-completers and dietary intake. No adverse effects/outcomes or side-effects were observed. CONCLUSIONS: Under energy restriction, TFAP2B may modify the effect of dietary fat intake on weight loss and waist reduction

    Bigtechs and the Emergence of New Systemically Important Financial Institutions: Lessons from the Chinese Experience

    Get PDF
    Over the past two decades, the emergence of giant technology firms (Bigtechs) has disrupted the traditional way that financial markets operate. These technology giants have leveraged network effects, massive amounts of data, and extensive customer bases to expand into the financial sector and rapidly achieve economies of scale and scope. The expansion of Bigtechs into finance has reinforced the pre-existing trends of digitalization and datafication in finance, which has evolved into a new era of the platformization. With a substantial presence in financial markets, the development of digital finance platforms has enormous potential for enhancing financial inclusion, efficiency and sustainable development. Despite these benefits, there are also many issues and risks in relation to their involvement in financial services, such as the emergence of new “too-big-to-fail” and “too-connected-to-fail” problems and the development of new systemically important financial institutions (SIFIs). In this context, the question is how policymakers and regulators, along with industry and consumers, can effectively leverage the benefits of the platformization of finance while mitigating its risks and negative impacts. This article focuses on the experience and lessons learned from China, in particular, as it has been a pioneer in the platformization of finance. As the potential problems arising from Bigtechs’ market dominance and economies of scale have become increasingly prominent, they have become the focus of a multi-pronged response from the Chinese government, particularly from the second half of 2020. In the context of digital finance, risks involved in platform-based and highly interconnected financial activities are being addressed via multiple areas of law, including finance, competition and antitrust, data protection and cybersecurity. Based on the Chinese experience, the broad cross-sectoral and rapidly evolving nature of Bigtech businesses requires a reconsideration of the complex interaction between different government policies and regulatory objectives. Drawing from the lessons of China’s experience, this article frames a number of strategies and recommendations for other jurisdictions that are exploring ways to regulate the emergence of the platformization of finance. Firstly, due to the rapidly evolving nature of Bigtech businesses, it is important to develop regulatory mechanisms that allow for timely review and adaptation to facilitate understanding of innovative financial services before risk events occur. Secondly, the exclusive control of customer data by Bigtechs is likely to undermine competition in financial markets, thus requiring effective data sharing mechanisms, such as Open Finance initiatives, to break data monopolies. Furthermore, given their combination of network effects and economics of scope and scale, digital finance platforms are in increasing cases becoming systemically important. There is a need for both activity-based and entity-based regulations to address risks involved in the interconnected financial businesses of these new SIFIs

    Hypoxia Sensitive Metal β-Ketoiminate Complexes Showing Induced Single Strand DNA Breaks and Cancer Cell Death by Apoptosis

    Get PDF
    A series of ruthenium and iridium complexes have been synthesised and characterised with 20 novel crystal structures discussed. The library of β-ketoiminate complexes has been shown to be active against MCF-7 (human breast carcino-ma), HT-29 (human colon carcinoma), A2780 (human ovarian carcinoma) and A2780cis (cisplatin resistant human ovarian carcinoma) cell lines, with selected complexes being more than three times as active as cisplatin against the A2780cis cell line. Complexes have also been shown to be highly active under hypoxic conditions, with the activities of some complexes increasing with a decrease in O2 concentration. The enzyme thioredoxin reductase is over-expressed in cancer cells and complexes reported herein have the advantage of inhibiting this enzyme, with IC50 values measured in the nanomolar range. The anti-cancer activity of these complexes was further investigated to determine whether activity is due to effects on cellular growth or cell survival. The complexes were found to induce significant cancer cell death by apoptosis with levels induced correlating closely with activity in chemosensitivity studies. As a possible cause of cell death, the ability of the complexes to induce damage to cellular DNA was also assessed. The complexes failed to induce double strand DNA break or DNA crosslinking but induced significant levels of single DNA strand breaks indi-cating a different mechanism of action to cisplatin
    corecore