8 research outputs found

    Latitude dictates plant diversity effects on instream decomposition

    Get PDF
    Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113 degrees of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes

    Conservation of highland streams in Kenya: the importance of the socio-economic dimension in effective management of resources

    No full text
    Conservation of streams in Africa cannot be considered separately from their importance as water sources for local people.  Humans and livestock interact daily with flowing water and its associated riparian vegetation, giving these landscape features social and economic importance.  Despite the destruction that these activities cause, they provide opportunities for imaginative approaches to conservation.  Issues focusing on resources other than water itself should be considered; for example, use of riparian vegetation for collection of medicinal herbs, firewood, timber for construction and as sites for spiritual, cultural and recreational activities.  To address these concerns, Kenyan streams and their catchments are given as examples in this paper, with the assumption that they are typical of streams and catchments in many parts of Africa.  These streams are used extensively for small scale abstraction, washing, livestock watering and exploitation of riparian vegetation.  All of these activities occur with little regulation or management, despite the riparian zones nominally being protected government property.  Effective management requires an understanding of patterns of supply and demand for water, which is seasonal, and for vegetation resources, which is continuous and increasing.  Challenges for effective management are identified as: politically- and tribally-mediated insecurity; ineffective governance, particularly with respect to enforcing protective legislation; different use of resources by different ethnic groups; division of labour along gender and age lines; poverty and the inability to diversify resources; traditions and neglect of traditional ecological knowledge; and inadequate formal education.  We propose that effective conservation of water and riparian resources – and therefore of essential ecosystem services – is best achieved by a combination of law enforcement and engagement of local communities with the resource upon which they depend.  Understanding the importance of the resource and engendering a spirit of community ‘ownership’ will help to avoid the current ‘tragedy-of-the-commons’, in which uncontrolled exploitation is increasing in a totally unsustainable fashion in tropical Africa

    A Global Assessment of the Effects of Eucalyptus Plantations on Stream Ecosystem Functioning

    No full text
    Forest change is a major environmental problem worldwide. Forest streams, with their large aquatic-terrestrial interface and strong dependence on terrestrially derived organic matter, are highly sensitive to forest changes. Fast-wood plantations can be particularly threatening if they markedly differ from native forests. Eucalyptus plantations, in particular, cover large areas worldwide (>20 million ha, mostly from 35 degrees S to 35 degrees N), but their effects on stream functioning have been addressed mostly in the Iberian Peninsula, which limits generalization to other regions. We assessed the effect of eucalyptus plantations on total (microbial decomposers and macroinvertebrates; in coarse mesh bags) and microbial-driven (in fine mesh bags) leaf litter decomposition by comparing streams flowing through native forests and eucalyptus plantations in seven regions in the Iberian Peninsula, Central Africa and South America. We found an overall significant inhibition of total litter decomposition by 23%. The effect did not significantly differ across regions, although a significant inhibition was found for Spain (-41%), South Brazil (-31%) and Uruguay (-36%) (Portugal had a marginally nonsignificant inhibition by 50%) but not for other regions, suggesting that the effects of plantations in temperate climates are mediated through effects on macroinvertebrate communities. Contrarily, the overall effect for microbial-driven litter decomposition was non-significant, but it significantly differed across regions with a significant stimulation in Central Brazil (110%) and Uruguay (32%), and nonsignificant effects for other regions (Kenya had a marginally nonsignificant inhibition by 48%), suggesting that functional redundancy among microbial communities is not general and effects can occur if plantations induce changes in nutrient availability, solar irradiation or litter characteristics

    Leaf-litter breakdown in tropical streams: is variability the norm?

    No full text
    Many forested headwater streams are heterotrophic ecosystems in which allochthonous inputs of plant litter are a major source of energy. Leaves of riparian vegetation entering the stream are broken down by a combination of biotic and abiotic processes and, in most temperate and boreal streams, provide food and habitat for dense populations of detritivorous invertebrates. However, tropical streams in different parts of the world show substantial variability in the number and diversity of leaf-shredding detritivores (hereafter detritivores). We used data obtained with standardized methods from multiple streams in Africa, the Americas, Asia, and Australia to test the hypothesis that this variability would lead to differences in the relative role of detritivores and microorganisms in the breakdown process.We also tested the hypotheses that variability in litter breakdown rates changes with litter type (native litter mixtures vs nonnative alder [Alnus glutinosa]) and is higher across regions within than outside the tropics. We found that litter breakdown rates were highly variable across sites, with no consistent pattern within geographic areas, although litter consumption by detritivores was negligible at several sites, all in America. Geographic patterns of litter breakdown also varied between litter types, with higher breakdown rates for alder than for native litter in most but not all regions.When litter breakdown rates at the tropical sites were compared to previously reported values from temperate and boreal regions, we found that differences in variability between tropical and temperate sites were inconsistent, with great differences among studies. Further global-scale studies will be needed to assess the extent to which latitudinal changes in the diversity and composition of microbial and detritivore assemblages contribute to variability in litter breakdown rates

    Data from: Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

    Get PDF
    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, have high rates of carbon dioxide evasion and they contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8ÂşN to 42.8ÂşS, using litter mixtures of local species differing in quality and phylogenetic diversity, and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, while variation in breakdown of litter mixtures was explained mainly by litter quality and phylogenetic diversity. The influence of these litter variables and pH was modulated by temperature, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons

    A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration

    No full text
    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase COâ‚‚production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback

    Latitude dictates plant diversity effects on instream decomposition

    No full text
    Abstract Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes
    corecore