22 research outputs found

    DNA methylation GrimAge version 2

    Get PDF
    We previously described a DNA methylation (DNAm) based biomarker of human mortality risk DNAm GrimAge. Here we describe version 2 of GrimAge (trained on individuals aged between 40 and 92) which leverages two new DNAm based estimators of (log transformed) plasma proteins: high sensitivity C-reactive protein (logCRP) and hemoglobin A1C (logA1C). We evaluate GrimAge2 in 13,399 blood samples across nine study cohorts. After adjustment for age and sex, GrimAge2 outperforms GrimAge in predicting mortality across multiple racial/ethnic groups (meta P=3.6x10-167 versus P=2.6x10-144) and in terms of associations with age related conditions such as coronary heart disease, lung function measurement FEV1 (correlation= -0.31, P=1.1x10-136), computed tomography based measurements of fatty liver disease. We present evidence that GrimAge version 2 also applies to younger individuals and to saliva samples where it tracks markers of metabolic syndrome. DNAm logCRP is positively correlated with morbidity count (P=1.3x10-54). DNAm logA1C is highly associated with type 2 diabetes (P=5.8x10-155). DNAm PAI-1 outperforms the other age-adjusted DNAm biomarkers including GrimAge2 in correlating with triglyceride (cor=0.34, P=9.6x10-267) and visceral fat (cor=0.41, P=4.7x10-41). Overall, we demonstrate that GrimAge version 2 is an attractive epigenetic biomarker of human mortality and morbidity risk

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.Peer reviewe

    Clinical features and outcomes of elderly hospitalised patients with chronic obstructive pulmonary disease, heart failure or both

    Get PDF
    Background and objective: Chronic obstructive pulmonary disease (COPD) and heart failure (HF) mutually increase the risk of being present in the same patient, especially if older. Whether or not this coexistence may be associated with a worse prognosis is debated. Therefore, employing data derived from the REPOSI register, we evaluated the clinical features and outcomes in a population of elderly patients admitted to internal medicine wards and having COPD, HF or COPD + HF. Methods: We measured socio-demographic and anthropometric characteristics, severity and prevalence of comorbidities, clinical and laboratory features during hospitalization, mood disorders, functional independence, drug prescriptions and discharge destination. The primary study outcome was the risk of death. Results: We considered 2,343 elderly hospitalized patients (median age 81 years), of whom 1,154 (49%) had COPD, 813 (35%) HF, and 376 (16%) COPD + HF. Patients with COPD + HF had different characteristics than those with COPD or HF, such as a higher prevalence of previous hospitalizations, comorbidities (especially chronic kidney disease), higher respiratory rate at admission and number of prescribed drugs. Patients with COPD + HF (hazard ratio HR 1.74, 95% confidence intervals CI 1.16-2.61) and patients with dementia (HR 1.75, 95% CI 1.06-2.90) had a higher risk of death at one year. The Kaplan-Meier curves showed a higher mortality risk in the group of patients with COPD + HF for all causes (p = 0.010), respiratory causes (p = 0.006), cardiovascular causes (p = 0.046) and respiratory plus cardiovascular causes (p = 0.009). Conclusion: In this real-life cohort of hospitalized elderly patients, the coexistence of COPD and HF significantly worsened prognosis at one year. This finding may help to better define the care needs of this population

    Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging

    Get PDF
    Background Biological aging estimators derived from DNA methylation data are heritable and correlate with morbidity and mortality. Consequently, identification of genetic and environmental contributors to the variation in these measures in populations has become a major goal in the field. Results Leveraging DNA methylation and SNP data from more than 40,000 individuals, we identify 137 genome-wide significant loci, of which 113 are novel, from genome-wide association study (GWAS) meta-analyses of four epigenetic clocks and epigenetic surrogate markers for granulocyte proportions and plasminogen activator inhibitor 1 levels, respectively. We find evidence for shared genetic loci associated with the Horvath clock and expression of transcripts encoding genes linked to lipid metabolism and immune function. Notably, these loci are independent of those reported to regulate DNA methylation levels at constituent clock CpGs. A polygenic score for GrimAge acceleration showed strong associations with adiposity-related traits, educational attainment, parental longevity, and C-reactive protein levels. Conclusion This study illuminates the genetic architecture underlying epigenetic aging and its shared genetic contributions with lifestyle factors and longevity.</p

    Culture and the Gender Gap in Competitive Inclination: Evidence from the Communist Experiment in China

    Full text link

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Longitudinal Changes in Resting Metabolic Rates with Aging Are Accelerated by Diseases

    No full text
    Resting metabolic rate (RMR) declines with aging and is related to changes in health status, but how specific health impairments impact basal metabolism over time has been largely unexplored. We analyzed the association of RMR with 15 common age-related chronic diseases for up to 13 years of follow-up in a population of 997 participants to the Baltimore Longitudinal Study of Aging. At each visit, participants underwent measurements of RMR by indirect calorimetry and body composition by DEXA. Linear regression models and linear mixed effect models were used to test cross-sectional and longitudinal associations of RMR and changes in disease status. Cancer and diabetes were associated with higher RMR at baseline. Independent of covariates, prevalent COPD and cancer, as well as incident diabetes, heart failure, and CKD were associated with a steeper decline in RMR over time. Chronic diseases seem to have a two-phase association with RMR. Initially, RMR may increase because of the high cost of resiliency homeostatic mechanisms. However, as the reserve capacity becomes exhausted, a catabolic cascade becomes unavoidable, resulting in loss of total and metabolically active mass and consequent RMR decline

    A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study.

    Get PDF
    BackgroundA person's rate of aging has important implications for his/her risk of death and disease; thus, quantifying aging using observable characteristics has important applications for clinical, basic, and observational research. Based on routine clinical chemistry biomarkers, we previously developed a novel aging measure, Phenotypic Age, representing the expected age within the population that corresponds to a person's estimated mortality risk. The aim of this study was to assess its applicability for differentiating risk for a variety of health outcomes within diverse subpopulations that include healthy and unhealthy groups, distinct age groups, and persons with various race/ethnic, socioeconomic, and health behavior characteristics.Methods and findingsPhenotypic Age was calculated based on a linear combination of chronological age and 9 multi-system clinical chemistry biomarkers in accordance with our previously established method. We also estimated Phenotypic Age Acceleration (PhenoAgeAccel), which represents Phenotypic Age after accounting for chronological age (i.e., whether a person appears older [positive value] or younger [negative value] than expected, physiologically). All analyses were conducted using NHANES IV (1999-2010, an independent sample from that originally used to develop the measure). Our analytic sample consisted of 11,432 adults aged 20-84 years and 185 oldest-old adults top-coded at age 85 years. We observed a total of 1,012 deaths, ascertained over 12.6 years of follow-up (based on National Death Index data through December 31, 2011). Proportional hazard models and receiver operating characteristic curves were used to evaluate all-cause and cause-specific mortality predictions. Overall, participants with more diseases had older Phenotypic Age. For instance, among young adults, those with 1 disease were 0.2 years older phenotypically than disease-free persons, and those with 2 or 3 diseases were about 0.6 years older phenotypically. After adjusting for chronological age and sex, Phenotypic Age was significantly associated with all-cause mortality and cause-specific mortality (with the exception of cerebrovascular disease mortality). Results for all-cause mortality were robust to stratifications by age, race/ethnicity, education, disease count, and health behaviors. Further, Phenotypic Age was associated with mortality among seemingly healthy participants-defined as those who reported being disease-free and who had normal BMI-as well as among oldest-old adults, even after adjustment for disease prevalence. The main limitation of this study was the lack of longitudinal data on Phenotypic Age and disease incidence.ConclusionsIn a nationally representative US adult population, Phenotypic Age was associated with mortality even after adjusting for chronological age. Overall, this association was robust across different stratifications, particularly by age, disease count, health behaviors, and cause of death. We also observed a strong association between Phenotypic Age and the disease count an individual had. These findings suggest that this new aging measure may serve as a useful tool to facilitate identification of at-risk individuals and evaluation of the efficacy of interventions, and may also facilitate investigation into potential biological mechanisms of aging. Nevertheless, further evaluation in other cohorts is needed
    corecore