2,737 research outputs found

    A Gell-Mann & Low Theorem Perspective on Quantum Computing: New Paradigm for Designing Quantum Algorithm

    Full text link
    The Gell-Mann & Low theorem is a cornerstone of Quantum Field Theory (QFT) and condensed matter physics, and many-body perturbation theory is a foundational tool for treating interactions. However, their integration into quantum algorithms remains a largely unexplored area of research, with current quantum simulation algorithms predominantly operating in the Schr\"odinger picture, leaving the potential of the interaction picture largely untapped. Our Variational Interaction-Picture S-matrix Ansatz (VIPSA) now fills this gap, specifically in the context of the Fermi-Hubbard model -- a canonical paradigm in condensed matter physics which is intricately connected to phenomena such as high-temperature superconductivity and Mott insulator transitions. This work offers a new conceptual perspective for variational quantum computing based upon the Gell-Mann & Low theorem. We achieve this by employing an innovative mathematical technique to explicitly unfold the normalized S-matrix, thereby enabling the systematic reconstruction of the Dyson series on a quantum computer, order by order. This method stands in contrast to the conventional reliance on Trotter expansion for adiabatic time evolution, marking a conceptual shift towards more sophisticated quantum algorithmic design. We leverage the strengths of the recently developed ADAPT-VQE algorithm, tailoring it to reconstruct perturbative terms effectively. Our simulations indicate that this method not only successfully recovers the Dyson series but also exhibits robust and stable convergence. We believe that our approach shows great promise in generalizing to more complex scenarios without increasing algorithmic complexity.Comment: 12 pages, 10 figure

    No increase in radiation-induced chromosome aberration complexity detected by m-FISH after culture in the presence of 5’-bromodeoxyuridine

    Get PDF
    The thymidine analogue, 5’-bromodeoxyuridine (BrdU), is a known mutagen that is routinely introduced into culture media for subsequent Harlequin stain analysis and determination of cell cycle status. Previously, we examined the induction of chromosome aberrations in human peripheral blood lymphocytes (PBL) known to be in their 1st cell division following exposure to a low dose (0.5 Gy, average one -particle per cell) of high-LET α-particles. We found complex chromosome aberrations to be characteristic of exposure to high-LET radiation and suggested the features of complex exchange to reflect qualitatively the spatial deposition of this densely ionising radiation. To exclude the possibility that BrdU addition post-irradiation influenced the complexity of chromosomal damage observed by m-FISH, the effect of increasing BrdU concentration on aberration complexity was investigated. Comparisons between BrdU concentration (0, 10, and 40 M) and between sham- and α-particle irradiated PBL, were made both independently and in combination to enable discrimination between BrdU and high-LET radiation effects. Aberration type, size, complexity and completeness were assessed by m-FISH, and the relative progression through cell division was evaluated. We found no evidence of any qualitative difference in the complexity of damage as visualized by m-FISH but did observe an increase in the frequency of complex exchanges with increasing BrdU concentration indicative of altered cell cycle kinetics. The parameters measured here are consistent with findings from previous in vitro and in vivo work, indicating that each complex aberration visualised by m-FISH is characteristic of the structure of the high-LET α-particle track and the geometry of cell irradiated

    Finding TJREVERB: A Crowdsourced Effort to Find a High School CubeSat

    Get PDF
    This paper documents the team\u27s process for finding the Thomas Jefferson Research and Education Vehicle for Radio Broadcasts (TJREVERB) with the help of the Amateur Radio community. The team attempted contacting the primary Iridium radio on TJREVERB for one week after it was deployed from the International Space Station but failed. The satellite did switch to its secondary radio, a SATT 4 APRS. However, the team was inexperienced and unprepared to contact the satellite using the SATT 4 APRS. Since we do not have access to an APRS ground station, we leveraged the help of twenty amateur radio volunteers from all around the world to contact TJREVERB. Additionally, many more amateur radio operators contributed their expertise and recorded sightings of TJREVERB using resources such as SatNog\u27s satellite database. This global network of volunteers cooperated to position their respective stations for the best possible chance of contact. This paper discusses how the Amateur Radio community\u27s involvement is invaluable to the students\u27 small satellite education. It also discusses the training program developed due to this experience. The lessons learned about satellite contacts and operations are critically important for future educational satellite teams and will contribute to their success

    Oral Anticoagulant Therapy Prescription in Patients With Atrial Fibrillation Across the Spectrum of Stroke Risk: Insights From the NCDR PINNACLE Registry

    Get PDF
    IMPORTANCE: Patients with atrial fibrillation (AF) are at a proportionally higher risk of stroke based on accumulation of well-defined risk factors. OBJECTIVE: To examine the extent to which prescription of an oral anticoagulant (OAC) in US cardiology practices increases as the number of stroke risk factors increases. DESIGN, SETTING, AND PARTICIPANTS: Cross-sectional registry study of outpatients with AF enrolled in the American College of Cardiology National Cardiovascular Data Registry's PINNACLE (Practice Innovation and Clinical Excellence) Registry between January 1, 2008, and December 30, 2012. As a measure of stroke risk, we calculated the CHADS2 score and the CHA2DS2-VASc score for all patients. Using multinomial logistic regression models adjusted for patient, physician, and practice characteristics, we examined the association between increased stroke risk score and prescription of an OAC. MAIN OUTCOMES AND MEASURES: The primary outcome was prescription of an OAC with warfarin sodium or a non-vitamin K antagonist OAC. RESULTS: The study cohort comprised 429 417 outpatients with AF. Their mean (SD) age was 71.3 (12.9) years, and 55.8% were male. Prescribed treatment consisted of an OAC (192 600 [44.9%]), aspirin only (111 134 [25.9%]), aspirin plus a thienopyridine (23 454 [5.5%]), or no antithrombotic therapy (102 229 [23.8%]). Each 1-point increase in risk score was associated with increased odds of OAC prescription compared with aspirin-only prescription using the CHADS2 score (adjusted odds ratio, 1.158; 95% CI, 1.144-1.172; P < .001) and the CHA2DS2-VASc score (adjusted odds ratio, 1.163; 95% CI, 1.157-1.169; P < .001). Overall, OAC prescription prevalence did not exceed 50% even in higher-risk patients with a CHADS2 score exceeding 3 or a CHA2DS2-VASc score exceeding 4. CONCLUSIONS AND RELEVANCE: In a large quality improvement registry of outpatients with AF, prescription of OAC therapy increased with a higher CHADS2 score and CHA2DS2-VASc score. However, a plateau of OAC prescription was observed, with less than half of high-risk patients receiving an OAC prescription

    CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies

    Get PDF
    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (96%\sim 96\%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are 4%4\% and 5.4%5.4\% respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.Comment: The paper has been accepted by ApJ. The materials we provide are available under [Surveys] > [CDFS] through the portal http://www.mpe.mpg.de/XraySurvey

    Tuning of catalytic activity by thermoelectric materials for carbon dioxide hydrogenation

    Get PDF
    An innovative use of a thermoelectric material (BiCuSeO) as a support and promoter of catalysis for CO2 hydrogenation is reported here. It is proposed that the capability of thermoelectric materials to shift the Fermi level and work function of a catalyst lead to an exponential increase of catalytic activity for catalyst particles deposited on its surface. Experimental results show that the CO2 conversion and CO selectivity are increased significantly by a thermoelectric Seebeck voltage. This suggests that the thermoelectric effect can not only increase the reaction rate but also change chemical equilibrium, which leads to the change of thermodynamic equilibrium for the conversion of CO2 in its hydrogenation reactions. It is also shown that this thermoelectric promotion of catalysis enables BiCuSeO oxide itself to have a high catalytic activity for CO2 hydrogenation. The generic nature of the mechanism suggests the possibility that many catalytic chemical reactions can be tuned in situ to achieve much higher reaction rates, or at lower temperatures, or have better desired selectivity through changing the backside temperature of the thermoelectric support

    Protein folding on the ribosome studied using NMR spectroscopy

    Get PDF
    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome-nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity

    Numerical observation of non-axisymmetric vesicles in fluid membranes

    Full text link
    By means of Surface Evolver (Exp. Math,1,141 1992), a software package of brute-force energy minimization over a triangulated surface developed by the geometry center of University of Minnesota, we have numerically searched the non-axisymmetric shapes under the Helfrich spontaneous curvature (SC) energy model. We show for the first time there are abundant mechanically stable non-axisymmetric vesicles in SC model, including regular ones with intrinsic geometric symmetry and complex irregular ones. We report in this paper several interesting shapes including a corniculate shape with six corns, a quadri-concave shape, a shape resembling sickle cells, and a shape resembling acanthocytes. As far as we know, these shapes have not been theoretically obtained by any curvature model before. In addition, the role of the spontaneous curvature in the formation of irregular crenated vesicles has been studied. The results shows a positive spontaneous curvature may be a necessary condition to keep an irregular crenated shape being mechanically stable.Comment: RevTex, 14 pages. A hard copy of 8 figures is available on reques
    corecore