59 research outputs found
Rancang Bangun Mesin Pengolahan Sampah Plastik High Density Polyethelene Menjadi Bahan Bakar Menggunakan Proses Pirolisis
Penelitian ini membahas mengenai rancang bangun reaktor pirolisis dan bertujuan untuk mengetahui proses kerja dan nilai karakteristik bahan bakar yang dihasilkan. Reaktor yang digunakan mempunyai ukuran diameter 41 cm dan tinggi 66 cm. Proses pirolisis dilakukan pada kisaran suhu 250–450oC. Dari penelitian ini menggunakan bahan baku seberat 5 kg dan didapatkan bahan bakar cair sebanyak 2,5 Kg. Adapun karakteristik bahan bakar cair yang dihasilkan adalah kandungan air 3,22 mm/kg, density 727,6 kg/m3 dan nilai oktan 60,4
RANCANG BANGUN MESIN PENGOLAHAN SAMPAH PLASTIK HIGH DENSITY POLYETHELENE MENJADI BAHAN BAKAR MENGGUNAKAN PROSES PIROLISIS
Penelitian ini membahas mengenai rancang bangun reaktor pirolisis dan bertujuan untuk mengetahui proses kerja dan nilai karakteristik bahan bakar yang dihasilkan. Reaktor yang digunakan mempunyai ukuran diameter 41 cm dan tinggi 66 cm. Proses pirolisis dilakukan pada kisaran suhu 250–450oC. Dari penelitian ini menggunakan bahan baku seberat 5 kg dan didapatkan bahan bakar cair sebanyak 2,5 Kg. Adapun karakteristik bahan bakar cair yang dihasilkan adalah kandungan air 3,22 mm/kg, density 727,6 kg/m3 dan nilai oktan 60,4
Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications
Superparamagnetic iron oxide nanoparticles
can providemultiple benefits for biomedical applications
in aqueous environments such asmagnetic separation or
magnetic resonance imaging. To increase the colloidal
stability and allow subsequent reactions, the introduction
of hydrophilic functional groups onto the particles’
surface is essential. During this process, the original
coating is exchanged by preferably covalently bonded
ligands such as trialkoxysilanes. The duration of the
silane exchange reaction, which commonly takes more
than 24 h, is an important drawback for this approach. In
this paper, we present a novel method, which introduces
ultrasonication as an energy source to dramatically
accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove
the generic character, different functional groups were
introduced on the surface including polyethylene glycol
chains, carboxylic acid, amine, and thiol groups. Their
colloidal stability in various aqueous buffer solutions as
well as human plasma and serum was investigated to
allow implementation in biomedical and sensing
applications.status: publishe
Pathway-Based Analysis of a Melanoma Genome-Wide Association Study: Analysis of Genes Related to Tumour-Immunosuppression
Systemic immunosuppression is a risk factor for melanoma, and sunburn-induced immunosuppression is thought to be causal. Genes in immunosuppression pathways are therefore candidate melanoma-susceptibility genes. If variants within these genes individually have a small effect on disease risk, the association may be undetected in genome-wide association (GWA) studies due to low power to reach a high significance level. Pathway-based approaches have been suggested as a method of incorporating a priori knowledge into the analysis of GWA studies. In this study, the association of 1113 single nucleotide polymorphisms (SNPs) in 43 genes (39 genomic regions) related to immunosuppression have been analysed using a gene-set approach in 1539 melanoma cases and 3917 controls from the GenoMEL consortium GWA study. The association between melanoma susceptibility and the whole set of tumour-immunosuppression genes, and also predefined functional subgroups of genes, was considered. The analysis was based on a measure formed by summing the evidence from the most significant SNP in each gene, and significance was evaluated empirically by case-control label permutation. An association was found between melanoma and the complete set of genes (pemp = 0.002), as well as the subgroups related to the generation of tolerogenic dendritic cells (pemp = 0.006) and secretion of suppressive factors (pemp = 0.0004), thus providing preliminary evidence of involvement of tumour-immunosuppression gene polymorphisms in melanoma susceptibility. The analysis was repeated on a second phase of the GenoMEL study, which showed no evidence of an association. As one of the first attempts to replicate a pathway-level association, our results suggest that low power and heterogeneity may present challenges
Recommended from our members
Variation in NF-Â B Signaling Pathways and Survival in Invasive Epithelial Ovarian Cancer
Survival in epithelial ovarian cancer (EOC) is influenced by the host immune response, yet the key genetic determinants of inflammation and immunity that impact prognosis are not known. The nuclear factor-kappa B (NF-κB) transcription factor family plays an important role in many immune and inflammatory responses, including the response to cancer. We studied common inherited variation in 210 genes in the NF-κB family in 10,084 patients with invasive EOC (5,248 high grade serous, 1,452 endometrioid, 795 clear cell, and 661 mucinous) from the Ovarian Cancer Association Consortium. Associations between genotype and overall survival were assessed using Cox regression for all patients and by major histology, adjusting for known prognostic factors and correcting for multiple testing (threshold for statistical significance—p < 2.5×10−5). Results were statistically significant when assessed for patients of a single histology. Key associations were with CARD11 (caspase recruitment domain family, member 11) rs41324349 in patients with mucinous EOC (HR 1.82, 95% CI 1.41–2.35, p=4.13×10−6) and TNFRSF13B (tumor necrosis factor receptor superfamily, member 13B) rs7501462 in patients with endometrioid EOC (HR 0.68, 95% CI 0.56–0.82, p=2.33×10−5). Other associations of note included TRAF2 (TNF receptor-associated factor 2) rs17250239 in patients with high-grade serous EOC (HR 0.84, 95% CI 0.77–0.92, p=6.49×10−5) and PLCG1 (phospholipase C, gamma 1) rs11696662 in patients with clear cell EOC (HR 0.43, 95% CI 0.26–0.73, p=4.56×10−4). These associations highlight the potential importance of genes associated with host inflammation and immunity in modulating clinical outcomes in distinct EOC histologies
Cell-type–specific eQTL of primary melanocytes facilitates identification of melanoma susceptibility genes
Most expression quantitative trait locus (eQTL) studies to date have been performed in heterogeneous tissues as opposed to specific cell types. To better understand the cell-type–specific regulatory landscape of human melanocytes, which give rise to melanoma but account for <5% of typical human skin biopsies, we performed an eQTL analysis in primary melanocyte cultures from 106 newborn males. We identified 597,335 cis-eQTL SNPs prior to linkage disequilibrium (LD) pruning and 4997 eGenes (FDR < 0.05). Melanocyte eQTLs differed considerably from those identified in the 44 GTEx tissue types, including skin. Over a third of melanocyte eGenes, including key genes in melanin synthesis pathways, were unique to melanocytes compared to those of GTEx skin tissues or TCGA melanomas. The melanocyte data set also identified trans-eQTLs, including those connecting a pigmentation-associated functional SNP with four genes, likely through cis-regulation of IRF4. Melanocyte eQTLs are enriched in cis-regulatory signatures found in melanocytes as well as in melanoma-associated variants identified through genome-wide association studies. Melanocyte eQTLs also colocalized with melanoma GWAS variants in five known loci. Finally, a transcriptome-wide association study using melanocyte eQTLs uncovered four novel susceptibility loci, where imputed expression levels of five genes (ZFP90, HEBP1, MSC, CBWD1, and RP11-383H13.1) were associated with melanoma at genome-wide significant P-values. Our data highlight the utility of lineage-specific eQTL resources for annotating GWAS findings, and present a robust database for genomic research of melanoma risk and melanocyte biology
Breast cancer risk factors and survival by tumor subtype: pooled analyses from the breast cancer association consortium
Background: It is not known whether modifiable lifestyle factors that predict survival after invasive breast cancer differ by subtype.Methods: We analyzed data for 121,435 women diagnosed with breast cancer from 67 studies in the Breast Cancer Association Consortium with 16,890 deaths (8,554 breast cancer specific) over 10 years. Cox regression was used to estimate associations between risk factors and 10-year all-cause mortality and breast cancer-specific mortality overall, by estrogen receptor (ER) status, and by intrinsic-like subtype.Results: There was no evidence of heterogeneous associations between risk factors and mortality by subtype (P-adj > 0.30). The strongest associations were between all-cause mortality and BMI >= 30 versus 18.5-25 kg/m(2) [HR (95% confidence interval (CI), 1.19 (1.06-1.34)]; current versus never smoking [1.37 (1.27-1.47)], high versus low physical activity [0.43 (0.21-0.86)], age >= 30 years versus 0-= 10 years since last full-term birth [1.31 (1.11-1.55)]; ever versus never use of oral contraceptives [0.91 (0.87-0.96)]; ever versus never use of menopausal hormone therapy, including current estrogen-progestin therapy [0.61 (0.54-0.69)]. Similar associations with breast cancer mortality were weaker; for example, 1.11 (1.02-1.21) for current versus never smoking.Conclusions: We confirm associations between modifiable lifestyle factors and 10-year all-cause mortality. There was no strong evidence that associations differed by ER status or intrinsic-like subtype.Impact: Given the large dataset and lack of evidence that associations between modifiable risk factors and 10-year mortality differed by subtype, these associations could be cautiously used in prognostication models to inform patient-centered care.Surgical oncolog
- …