41 research outputs found

    Stomatin-like Protein 2 Links Mitochondria to T-Cell Receptor Signalosomes at the Immunological Synapse and Enhances T-Cell Activation

    Get PDF
    T cell activation through the antigen receptor (TCR) requires sustained signalling from microclusters in the peripheral region of the immunological synapse (IS). The bioenergetics of such prolonged signaling have been linked to the redistribution of mitochondria to the IS. Here, we report that stomatin-like protein-2 (SLP-2) plays an important role in this process by bridging polarized mitochondria to these signaling TCR microclusters or signalosomes in the IS in a polymerized actin-dependent manner. In this way, SLP-2 helps to sustain TCR-dependent signalling and enhances T cell activation

    The Efficiency of CD4 Recruitment to Ligand-engaged TCR Controls the Agonist/Partial Agonist Properties of Peptide–MHC Molecule Ligands

    Get PDF
    One hypothesis seeking to explain the signaling and biological properties of T cell receptor for antigen (TCR) partial agonists and antagonists is the coreceptor density/kinetic model, which proposes that the pharmacologic behavior of a TCR ligand is largely determined by the relative rates of (a) dissociation of ligand from an engaged TCR and (b) recruitment of lck-linked coreceptors to this ligand-engaged receptor. Using several approaches to prevent or reduce the association of CD4 with occupied TCR, we demonstrate that consistent with this hypothesis, the biological and biochemical consequence of limiting this interaction is to convert typical agonists into partial agonist stimuli. Thus, adding anti-CD4 antibody to T cells recognizing a wild-type peptide–MHC class II ligand leads to disproportionate inhibition of interleukin-2 (IL-2) relative to IL-3 production, the same pattern seen using a TCR partial agonist/antagonist. In addition, T cells exposed to wild-type ligand in the presence of anti-CD4 antibodies show a pattern of TCR signaling resembling that seen using partial agonists, with predominant accumulation of the p21 tyrosine-phosphorylated form of TCR-ζ, reduced tyrosine phosphorylation of CD3ε, and no detectable phosphorylation of ZAP-70. Similar results are obtained when the wild-type ligand is presented by mutant class II MHC molecules unable to bind CD4. Likewise, antibody coligation of CD3 and CD4 results in an agonist-like phosphorylation pattern, whereas bivalent engagement of CD3 alone gives a partial agonist-like pattern. Finally, in accord with data showing that partial agonists often induce T cell anergy, CD4 blockade during antigen exposure renders cloned T cells unable to produce IL-2 upon restimulation. These results demonstrate that the biochemical and functional responses to variant TCR ligands with partial agonist properties can be largely reproduced by inhibiting recruitment of CD4 to a TCR binding a wild-type ligand, consistent with the idea that the relative rates of TCR–ligand disengagement and of association of engaged TCR with CD4 may play a key role in determining the pharmacologic properties of peptide–MHC molecule ligands. Beyond this insight into signaling through the TCR, these results have implications for models of thymocyte selection and the use of anti-coreceptor antibodies in vivo for the establishment of immunological tolerance

    The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar and APOGEE-2 Data

    Get PDF
    This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library (MaStar) accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 (APOGEE-2) survey which publicly releases infra-red spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the sub-survey Time Domain Spectroscopic Survey (TDSS) data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey (SPIDERS) sub-survey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated Value Added Catalogs (VACs). This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper (MWM), Local Volume Mapper (LVM) and Black Hole Mapper (BHM) surveys

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Phospho-LAT-independent Activation of the Ras-mitogen-activated Protein Kinase Pathway: A Differential Recruitment Model of TCR Partial Agonist Signaling

    No full text
    Stimulation of mature T cells with agonist ligands of the Ag receptor (TCR) causes rapid phosphorylation of tyrosine-based activation motifs in the intracellular portion of TCR-zeta and CD3 and activation of several intracellular signaling cascades. Coordinate activation of these pathways is dependent on Lck- and ZAP-70-mediated tyrosine phosphorylation of a 36-kDa linker for activation of T cells and subsequent recruitment of phospholipase C-gamma1, Grb2-SOS, and SLP-76-vav. Here, we show that TCR partial agonist ligands can selectively activate one of these pathways, the Ras-mitogen-activated protein kinase pathway, by inducing recruitment of Grb2-SOS complexes to incompletely phosphorylated p21 phospho-TCR-zeta. This bypasses the need for activation of Lck and ZAP-70, and for phosphorylation of the linker for activation of T cells to activate Ras. We propose a general model in which differential recruitment of activating complexes away from transmembrane linker proteins may determine selective activation of a given signaling pathway

    Cytoskeletal Disruption Induces T Cell Apoptosis by a Caspase-3 Mediated Mechanism

    No full text
    T cell apoptosis can be triggered by different mechanisms that lead to distinctive features such as cell shrinkage, membrane blebbing, phosphatidylserine externalization, and internucleosomal DNA fragmentation. Prevailing models for the induction of apoptosis place the cytoskeleton as a distal target of the death effector molecules (\u27executioners\u27). However, the cytoskeleton can also play a role in the induction of apoptosis as suggested by the finding that cytoskeletal disruption can induce apoptosis. The mechanism by which this occurs is unknown. Here, we report that T cell apoptosis by cytoskeletal disruption involves a protein synthesis-independent mechanism leading to up-regulation of caspase-3 protease activity and increased accessibility of active caspase-3 to its substrate. Thus, cytoskeleton integrity may regulate the subcellular compartmentalization of death effector molecules

    Conversion of CTLA-4 from Inhibitor to Activator of T cells with a Bispecific Tandem Single-chain Fv Ligand

    No full text
    Abs or their recombinant fragments against surface receptors of the Ig superfamily can induce or block the receptors\u27 native function depending on whether they induce or prevent the assembly of signalosomes on their cytoplasmic tails. In this study, we introduce a novel paradigm based on the observation that a bispecific tandem single-chain variable region fragment ligand of CTLA-4 by itself converts this inhibitory receptor into an activating receptor for primary human T lymphocytes. This reversal of function results from increased recruitment of the serine/threonine phosphatase 2A to the cytoplasmic tail of CTLA-4, consistent with a role of this phosphatase in the regulation of CTLA-4 function, and assembly of a distinct signalosome that activates an lck-dependent signaling cascade and induces IL-2 production. Our data demonstrate that the cytoplasmic domain of CTLA-4 has an inherent plasticity for signaling that can be exploited therapeutically with recombinant ligands for this receptor
    corecore