15 research outputs found

    Practical guidelines and recent advances in the Itrax XRF core-scanning procedure

    Get PDF
    XRF core scanning has evolved to become a standard analytical technique for the rapid assessment of elemental, density and textural variations in a wide range of sediments and other materials, with applications ranging from palaeoceanography, paleoclimatology, geology, and environmental forensics to environmental protection. In general, scanning provides rapid, non-destructive acquisition of elemental and textural variations at sub-millimetre resolution for a wide range of materials. Numerous procedural adaptations have been developed for the growing number of applications, such as analyses of unconsolidated, water-rich sediments, powdered soil samples, or resin bags. Here, practical expertise and guidance from the Itrax community, gained over 15 years, is presented that should provide insights for new and experienced users

    The 8200 year B.P. event in the slope water system, western subpolar North Atlantic

    Get PDF
    Author Posting. Š American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 20 (2005): PA2003, doi:10.1029/2004PA001074.Stable isotope, trace metal, alkenone paleothermometry, and radiocarbon methods have been applied to sediment cores in the western subpolar North Atlantic between Hudson Strait and Cape Hatteras to reveal the history of climate in that region over the past ∟11 kyr. We focus on cores from the Laurentian Fan, which is known to have rapid and continuous accumulation of hemipelagic sediment. Although results among our various proxy data are not always in agreement, the weight of the evidence (alkenone sea surface temperature (SST), δ18O and abundance of Globigerinoides ruber) indicates a continual cooling of surface waters over Laurentian Fan, from about 18°C in the early Holocene to about 8°C today. Alternatively, Mg/Ca data on planktonic foraminifera indicate no systematic change in Holocene SST. The inferred long-term decrease in SST was probably driven by decreasing seasonality of Northern Hemisphere insolation. Two series of proxy data show the gradual cooling was interrupted by a two-step cold pulse that began 8500 years ago, and lasted about 700 years. Although this event is associated with the final deglaciation of Hudson Bay, there is no δ18O minimum anywhere in the Labrador Sea, yet there is some evidence for it as far south as Cape Hatteras. Finally, although the 8200 year B.P. event has been implicated in decreasing North Atlantic ventilation, and hence widespread temperature depression on land and at sea, we find inconsistent evidence for a change at that time in deep ocean nutrient content at ∟4 km water depth.Funding for JPS was from the NOAA Climate and Global Change Program (NA 16GP2679), NSF-Earth System History (0116940), the Jeptha H. and Emily V. Wade Award for Research, and a Henry L. and Grace Doherty Professorship. LDK and YR were funded by NSF grant OCE-0117149

    Stratigraphic Occurrences of Sub-Polar Planktic Foraminifera in Pleistocene Sediments on the Lomonosov Ridge, Arctic Ocean

    No full text
    Turborotalita quinqueloba is a species of planktic foraminifera commonly found in the sub-polar North Atlantic along the pathway of Atlantic waters in the Nordic seas and sometimes even in the Arctic Ocean, although its occurrence there remains poorly understood. Existing data show that T. quinqueloba is scarce in Holocene sediments from the central Arctic but abundance levels increase in sediments from the last interglacial period [Marine isotope stage (MIS) 5, 71-120 ka] in cores off the northern coast of Greenland and the southern Mendeleev Ridge. Turborotalita also occurs in earlier Pleistocene interglacials in these regions, with a unique and widespread occurrence of the less known Turborotalita egelida morphotype, proposed as a biostratigraphic marker for MIS 11 (474-374 ka). Here we present results from six new sediment cores, extending from the central to western Lomonosov Ridge, that show a consistent Pleistocene stratigraphy over 575 km. Preliminary semi-quantitative assessments of planktic foraminifer abundance and assemblage composition in two of these records (LOMROG12-7PC and AO16-5PC) reveal two distinct stratigraphic horizons containing Turborotalita in MIS 5. Earlier occurrences in Pleistocene interglacials are recognized, but contain significantly fewer specimens and do not appear to be stratigraphically coeval in the studied sequences. In all instances, the Turborotalita specimens resemble the typical T. quinqueloba morphotype but are smaller (63-125 mu m), smooth-walled and lack the final thickened calcite layer common to adults of the species. These results extend the geographical range for T. quinqueloba in MIS 5 sediments of the Arctic Ocean and provide compelling evidence for recurrent invasions during Pleistocene interglacials
    corecore