62 research outputs found

    Abrupt sea surface pH change at the end of the Younger Dryas in the central sub-equatorial Pacific inferred from boron isotope abundance in corals (<i>Porites</i>)

    Get PDF
    The "ÎŽ<sup>11</sup>B-pH" technique was applied to modern and ancient corals <i>Porites</i> from the sub-equatorial Pacific areas (Tahiti and Marquesas) spanning a time interval from 0 to 20.720 calendar years to determine the amplitude of pH changes between the Last Glacial Period and the Holocene. Boron isotopes were measured by Multi-Collector – Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS) with an external reproducibility of 0.25&permil;, allowing a precision of about &plusmn;0.03 pH-units for pH values between 8 and 8.3. The boron concentration [B] and isotopic composition of modern samples indicate that the temperature strongly controls the partition coefficient K<sub><i>D</i></sub> for different aragonite species. Modern coral ÎŽ<sup>11</sup>B values and the reconstructed sea surface pH values for different Pacific areas match the measured pH expressed on the seawater scale and confirm the calculation parameters that were previously determined by laboratory calibration exercises. Most ancient sea surface pH reconstructions near Marquesas are higher than modern values. These values range between 8.19 and 8.27 for the Holocene and reached 8.30 at the end of the last glacial period (20.7 kyr BP). At the end of the Younger Dryas (11.50&plusmn;0.1 kyr BP), the central sub-equatorial Pacific experienced a dramatic drop of up to 0.2 pH-units from the average pH of 8.2 before and after this short event. Using the marine carbonate algorithms, we recalculated the aqueous <i>p</i>CO<sub>2</sub> to be 440&plusmn;25 ppmV at around 11.5 kyr BP for corals at Marquesas and ~500 ppmV near Tahiti where it was assumed that <i>p</i>CO<sub>2</sub> in the atmosphere was 250 ppmV. Throughout the Holocene, the difference in <i>p</i>CO<sub>2</sub> between the ocean and the atmosphere at Marquesas (Δ<i>p</i>CO<sub>2</sub>) indicates that the surface waters behave as a moderate CO<sub>2</sub> sink or source (−53 to 20 ppmV) during El Niño-like conditions. By contrast, during the last glacial/interglacial transition, this area was a marked source of CO<sub>2</sub> (21 to 92 ppmV) for the atmosphere, highlighting predominant La Niña-like conditions. Such conditions were particularly pronounced at the end of the Younger Dryas with a large amount of CO<sub>2</sub> released with Δ<i>p</i>CO<sub>2</sub> of +185&plusmn;25 ppmV. This last finding provides further evidence of the marked changes in the surface water pH and temperature in the equatorial Pacific at the Younger Dryas-Holocene transition and the strong impact of oceanic dynamic on the atmospheric CO<sub>2</sub> content

    Experimental study of solubility of elemental sulphur in methane

    Get PDF
    International audienceThe chemical engineering department of LaTEP has been working for many years on theproblem of sulphur deposition especially in natural gas network [1, 2]. The solid sulphurappears immediately downstream of a pressure reduction facility. One of the hypothesesproposed to explain the solid formation, based on a thermodynamic approach, is thedesublimation of sulphur. During gas expansion, both pressure and temperature decrease.Consequently the gas may become over saturated in sulphur. Because we are below thetemperature of sulphur triple point, part of the gaseous sulphur can be transformed into solidparticles. Thus, it is important to obtain solubility data of sulphur in natural gases. Methane isthe major natural gas component. So, it is of importance to measure solubility of elementalsulphur in CH4. In this paper experimental measurements up to a pressure and temperature of30 MPA and 363.15 K are presented.The principle of the experimental pilot can be resumed following three steps: saturationof the gas with sulphur, trap of all the dissolved gaseous sulphur and finally quantification.Although the principle is simple, experimental difficulties occur at the three steps. A variablevolume equilibrium cell is used to saturate the gas with sulphur. Since sulphur solubility valueis weak in gas transport conditions, the volume of the cell is necessarily big (0.5 Litre). Thepressure of the equilibrium cell is held constant thanks to a piston during the trapping step. Anoriginal gaseous sulphur trapping method was developed. It is based on the reactiveabsorption of the gaseous sulphur with solvent. Indeed, the gas bubbles into a liquid solutionwhich traps gaseous sulphur. Finally, the solution which contains a standard is analysed bygas chromatography and sulphur is quantified. The total volume of the gas withdrawn isdetermined by a position transducer placed on the autoclave. Then, the sulphur solubilityvalue is calculated

    A land-to-ocean perspective on the magnitude, source and implication of DIC flux from major Arctic rivers to the Arctic Ocean

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 26 (2012): GB4018, doi:10.1029/2011GB004192.A series of seasonally distributed measurements from the six largest Arctic rivers (the Ob', Yenisey, Lena, Kolyma, Yukon and Mackenzie) was used to examine the magnitude and significance of Arctic riverine DIC flux to larger scale C dynamics within the Arctic system. DIC concentration showed considerable, and synchronous, seasonal variation across these six large Arctic rivers, which have an estimated combined annual DIC flux of 30 Tg C yr−1. By examining the relationship between DIC flux and landscape variables known to regulate riverine DIC, we extrapolate to a DIC flux of 57 ± 9.9 Tg C yr−1for the full pan-arctic basin, and show that DIC export increases with runoff, the extent of carbonate rocks and glacial coverage, but decreases with permafrost extent. This pan-arctic riverine DIC estimate represents 13–15% of the total global DIC flux. The annual flux of selected ions (HCO3−, Na+, Ca2+, Mg2+, Sr2+, and Cl−) from the six largest Arctic rivers confirms that chemical weathering is dominated by inputs from carbonate rocks in the North American watersheds, but points to a more important role for silicate rocks in Siberian watersheds. In the coastal ocean, river water-induced decreases in aragonite saturation (i.e., an ocean acidification effect) appears to be much more pronounced in Siberia than in the North American Arctic, and stronger in the winter and spring than in the late summer. Accounting for seasonal variation in the flux of DIC and other major ions gives a much clearer understanding of the importance of riverine DIC within the broader pan-arctic C cycle.Funding for this work was provided through NSF-OPP-0229302 and NSF-OPP-0732985. Additional support to SET was provided by an NSERC Postdoctoral Fellowship.2013-06-1

    Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations

    Get PDF
    Microorganisms in the terrestrial deep biosphere host up to 20% of the earth's biomass and are suggested to be sustained by the gases hydrogen and carbon dioxide. A metagenome analysis of three deep subsurface water types of contrasting age (from &lt;20 to several thousand years) and depth (171 to 448 m) revealed phylogenetically distinct microbial community subsets that either passed or were retained by a 0.22 mu m filter. Such cells of &lt;0.22 mu m would have been overlooked in previous studies relying on membrane capture. Metagenomes from the three water types were used for reconstruction of 69 distinct microbial genomes, each with &gt;86% coverage. The populations were dominated by Proteobacteria, Candidate divisions, unclassified archaea and unclassified bacteria. The estimated genome sizes of the &lt;0.22 mu m populations were generally smaller than their phylogenetically closest relatives, suggesting that small dimensions along with a reduced genome size may be adaptations to oligotrophy. Shallow 'modern marine' water showed community members with a predominantly heterotrophic lifestyle. In contrast, the deeper, 'old saline' water adhered more closely to the current paradigm of a hydrogen-driven deep biosphere. The data were finally used to create a combined metabolic model of the deep terrestrial biosphere microbial community.Supplementary information available for this article at http://www.nature.com/ismej/journal/v10/n5/suppinfo/ismej2015185s1.html</p

    Multiple introductions and environmental factors affecting the establishment of invasive species on a volcanic island

    Get PDF
    Invasive species pose significant challenges to local biodiversity and ecosystem function, especially on islands. Understanding the factors affecting the establishment of invasive species and how these relate to their genetic background is crucial to improve our ability to manage biological invasions. Here, we performed a phylogeographic study of two cosmopolitan megascolecid earthworms of Asian origin: Amynthas gracilis and Amynthas corticis at 38 localities on S~ao Miguel Island in the Azores archipelago (Portugal). Samples from putative source populations in China, Taiwan, Malaysia, as well as ‘outlier’ populations in USA, Mexico, Brazil and Spain were also included, resulting in a total of 565 earthworms genotyped at the mitochondrial cytochrome oxidase I (COI) and 16S ribosomal RNA genes. Soils were characterised for elemental composition, water holding capacity, organic matter content, texture and pH, and some habitat features were recorded. Both species showed a wide distribution across S~ao Miguel and their abundances were negatively associated, suggesting spatial segregation/competition, with the parthenogenetic A. corticis being relatively more successful. The presence of multiple mitochondrial lineages within each species, one of them found exclusively in the Azores, suggests a complex invasion history. Environmental factors affected the establishment of the different lineages, with metal concentrations, topographical elevation and the degree of human influence being differently linked to their abundances. Lineage diversity was negatively correlated with metal concentrations. These results emphasise the importance of genetically characterising invasive species to better understand their invasion patterns

    Comparison between radiological and chemical health risks assessments: The Nord-Cotentin study

    No full text
    In 1997, the French Ministries of the Environment and Health commissioned a detailed radioecological analysis of the Nord-Cotentin region in response to public concern about radiological risks associated with local nuclear facilities. This work was entrusted to the Groupe RadioĂ©cologie Nord-Cotentin (GRNC), a working group of experts from various origins (industrial facilities operators, public institutions, monitoring agencies, public interest and citizens groups, foreign experts). An epidemiology investigation in 1995 had reported an excess of two radiation-induced leukemia cases in an area near a nuclear reprocessing plant, a finding that attracted great interest in France, and which stimulated the need for further investigation. After the publication of its report in 1999, the GRNC was again commissioned to perform, inter alia, a corresponding assessment on the chemical releases of the local nuclear facilities. This second stage is now achieved and has revealed important similarities as well as some important differences between radiological and chemical risk assessments when applied to the specific case of the Nord-Cotentin nuclear facilities. Due to the considerable amount of work and results of the GRNC, the purpose for this article is to briefly describe the main developments of the risk assessment methodology followed by the GRNC in both cases, to detail some of the main results and to identify and explain, at each step, the similarities and the differences. The whole technical documents that support these works are available on the Internet at 〈http://www.irsn.fr/nord-cotentin/〉. Copyright © Taylor & Francis Inc

    Bromine Isotope Variations in Magmatic and Hydrothermal Sodalite and Tugtupite and the Estimation of Br Isotope Fractionation between Melt and Sodalite

    No full text
    We determined the bromine isotope compositions of magmatic and hydrothermal sodalite (Na8Al6Si6O24Cl2) and tugtupite (Na8Al2Be2Si8O24Cl2) from the IlĂ­maussaq intrusion in South Greenland, in order to constrain the Br isotope composition of the melt and hydrothermal fluids from which these minerals were formed. Early formed magmatic sodalite has high Br contents (138 ± 10 ”g/g, n = 5) and low ÎŽ81Br values (+0.23 ± 0.07‰). Late stage hydrothermal sodalite has lower Br contents (53±10 ”g/g, n = 5) and higher ÎŽ81Br values (+0.36 ± 0.08‰). Tugtupite that forms at even later stages shows the lowest Br contents (26 ± 2 ”g/g, n = 2) and the highest ÎŽ81Br values (+0.71 ± 0.17‰). One hydrothermal sodalite has a Br concentration of 48 ± 9 ”g/g and an exceptionally high ÎŽ81Br of 0.82 ± 0.12‰, very similar to the ÎŽ81Br of tugtupites. We suggest that this may be a very late stage sodalite that possibly formed under Be deficient conditions. The data set suggests that sodalite crystallises with a negative Br isotope fractionation factor, which means that the sodalite has a more negative ÎŽ81Br than the melt, of −0.3 to −0.4‰ from the melt. This leads to a value of +0.5 to +0.6‰ relative to SMOB for the melt from which sodalite crystallises. This value is similar to a recently published ÎŽ81Br value of +0.7‰ for very deep geothermal fluids with very high R/Ra He isotope ratios, presumably derived from the mantle. During crystallisation of later stage hydrothermal sodalite and the Be mineral tugtupite, ÎŽ81Br of the residual fluids (both melt and hydrothermal fluid) increases as light 79Br crystallises in the sodalite and tugtupite. This results in increasing ÎŽ81Br values of later stage minerals that crystallise with comparable fractionation factors from a fluid with increasingly higher ÎŽ81Br values
    • 

    corecore