19 research outputs found

    The Relation Between Perceived Mental Effort, Monitoring Judgments, and Learning Outcomes:A Meta-Analysis

    Get PDF
    Accurately monitoring one’s learning processes during self-regulated learning depends on using the right cues, one of which could be perceived mental effort. A meta-analysis by Baars et al. (2020) found a negative association between mental effort and monitoring judgments (r = -.35), suggesting that the amount of mental effort experienced during a learning task is usually negatively correlated with learners’ perception of learning. However, it is unclear how monitoring judgments and perceptions of mental effort relate to learning outcomes. To examine if perceived mental effort is a diagnostic cue for learning outcomes, and whether monitoring judgments mediate this relationship, we employed a meta-analytic structural equation model. Results indicated a negative, moderate association between perceived mental effort and monitoring judgments (β = -.19), a positive, large association between monitoring judgments and learning outcomes (β =.29), and a negative, moderate indirect association between perceived mental effort and learning outcomes (β = -.05), which was mediated by monitoring judgments. Our subgroup analysis did not reveal any significant differences across moderators potentially due to the limited number of studies included per moderator category. Findings suggest that when learners perceive higher levels of mental effort, they exhibit lower learning (confidence) judgments, which relates to lower actual learning outcomes. Thus, learners seem to use perceived mental effort as a cue to judge their learning while perceived mental effort only indirectly relates to actual learning outcomes.</p

    Targeting and translocation of the two lipoproteins in Escherichia coli via the SRP/Sec/YidC pathway.

    Get PDF
    In Escherichia coli, two main protein targeting pathways to the inner membrane exist: the SecB pathway for the essentially posttranslational targeting of secretory proteins and the SRP pathway for cotranslational targeting of inner membrane proteins (IMPs). At the inner membrane both pathways converge at the Sec translocase, which is capable of both linear transport into the periplasm and lateral transport into the lipid bilayer. The Sec-associated YidC appears to assist the lateral transport of IMPs from the Sec translocase into the lipid bilayer. It should be noted that targeting and translocation of only a handful of secretory proteins and IMPs have been studied. These model proteins do not include lipoproteins. Here, we have studied the targeting and translocation of two secretory lipoproteins, the murein lipoprotein and the bacteriocin release protein, using a combined in vivo and in vitro approach. The data indicate that both murein lipoprotein and bacteriocin release protein require the SRP pathway for efficient targeting to the Sec translocase. Furthermore, we show that YidC plays an important role in the targeting/translocation of both lipoproteins

    The GEOTRACES Intermediate Data Product 2014

    Get PDF
    The GEOTRACES Intermediate Data Product 2014 (IDP2014) is the first publicly available data product of the international GEOTRACES programme, and contains data measured and quality controlled before the end of 2013. It consists of two parts: (1) a compilation of digital data for more than 200 trace elements and isotopes (TEIs) as well as classical hydrographic parameters, and (2) the eGEOTRACES Electronic Atlas providing a strongly inter-linked on-line atlas including more than 300 section plots and 90 animated 3D scenes. The IDP2014 covers the Atlantic, Arctic, and Indian oceans, exhibiting highest data density in the Atlantic. The TEI data in the IDP2014 are quality controlled by careful assessment of intercalibration results and multi-laboratory data comparisons at cross-over stations. The digital data are provided in several formats, including ASCII spreadsheet, Excel spreadsheet, netCDF, and Ocean Data View collection. In addition to the actual data values the IDP2014 also contains data quality flags and 1-? data error values where available. Quality flags and error values are useful for data filtering. Metadata about data originators, analytical methods and original publications related to the data are linked to the data in an easily accessible way. The eGEOTRACES Electronic Atlas is the visual representation of the IDP2014 data providing section plots and a new kind of animated 3D scenes. The basin-wide 3D scenes allow for viewing of data from many cruises at the same time, thereby providing quick overviews of large-scale tracer distributions. In addition, the 3D scenes provide geographical and bathymetric context that is crucial for the interpretation and assessment of observed tracer plumes, as well as for making inferences about controlling processes

    Protein targeting, translocation and insertion in Escherichia coli : Proteomic analysis of substrate-pathway relationships

    No full text
    Approximately 10% of the open reading frames in the genome of the Gram-negative bacterium E. coli encodes secretory proteins, and 20% encodes integral inner membrane proteins (IMPs). These proteins are sorted to their correct cellular compartments (the periplasm and the outer and inner membranes) by specialized targeting and translocation/insertion systems. So far, a very limited set of model proteins have been used to study proteins sorting requirements in E. coli. The main objective of all the papers presented in this thesis was to determine the targeting and translocation/insertion requirements of more E. coli proteins. In papers I and II, this was done using focused approaches. Selected model proteins (lipoproteins and putative outer membrane proteins) were expressed from plasmids and their targeting and translocation were analysed in vitro by crosslinking experiments and/or in vivo by pulse-chase analysis in different E. coli mutant strains. In papers III a comparative sub-proteome analysis was carried out to define the role of the cytoplasmic chaperone SecB in protein targeting. In paper IV, a similar approach was used to study how protein translocation and insertion is affected upon depletion of the essential Sec-translocon component SecE. The ‘global’ approach used in paper III and IV allowed us to study protein targeting and translocation/insertion requirements on a proteome level. This led to the identification of several novel SecB substrates and a large number of potential Sec-translocon independent IMPs

    Protein targeting, translocation and insertion in Escherichia coli : Proteomic analysis of substrate-pathway relationships

    No full text
    Approximately 10% of the open reading frames in the genome of the Gram-negative bacterium E. coli encodes secretory proteins, and 20% encodes integral inner membrane proteins (IMPs). These proteins are sorted to their correct cellular compartments (the periplasm and the outer and inner membranes) by specialized targeting and translocation/insertion systems. So far, a very limited set of model proteins have been used to study proteins sorting requirements in E. coli. The main objective of all the papers presented in this thesis was to determine the targeting and translocation/insertion requirements of more E. coli proteins. In papers I and II, this was done using focused approaches. Selected model proteins (lipoproteins and putative outer membrane proteins) were expressed from plasmids and their targeting and translocation were analysed in vitro by crosslinking experiments and/or in vivo by pulse-chase analysis in different E. coli mutant strains. In papers III a comparative sub-proteome analysis was carried out to define the role of the cytoplasmic chaperone SecB in protein targeting. In paper IV, a similar approach was used to study how protein translocation and insertion is affected upon depletion of the essential Sec-translocon component SecE. The ‘global’ approach used in paper III and IV allowed us to study protein targeting and translocation/insertion requirements on a proteome level. This led to the identification of several novel SecB substrates and a large number of potential Sec-translocon independent IMPs

    Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis

    No full text
    Re-use and recycling in the construction sector is essential to keep resource use in check. Data availability about the material contents of buildings is significant challenge for planning future re-use potentials. Compiling material intensity (MI) data is time and resource intensive. Often studies end up with only a handful of datapoints. In order to adequately cover the diversity of buildings and materials found in cities, and accurately assess material stocks at detailed spatial scopes, many more MI datapoints are needed. In this work, we present a database on the material intensity of the Dutch building stock, containing 61 large-scale demolition projects with a total of 781 datapoints, representing more than 306,000 square meters of built floor space. This dataset is representative of the types of buildings being demolished in the Netherlands. Our data were empirically sourced in collaboration with a demolition company that explicitly focuses on re-using and recycling materials and components. The dataset includes both the structural building materials and component materials, and covers a wide range of building types, sizes, and construction years. Compared to the existing literature, this paper adds significantly more datapoints, and more detail to the different types of materials found in demolition streams. This increase in data volume is a necessary step toward enabling big data methods, such as data mining and machine learning. These methods could be used to uncover previously unrecognized patters in material stocks, or more accurately estimate material stocks in locations that have only sparse data available. This article met the requirements for a Gold-Gold JIE data openness badge described at http://jie.click/badges.</p

    Released GFR�1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron

    Get PDF
    Although both c-Ret and GFR�1 are required for re-sponsiveness to GDNF, GFR�1 is widely expressed in the absence of c-Ret, suggesting alternative roles for “ectopic ” sites of GFR�1 expression. We show that GFR�1 is released by neuronal cells, Schwann cells, and injured sciatic nerve. c-Ret stimulation in trans by soluble or immobilized GFR�1 potentiates downstream signaling, neurite outgrowth, and neuronal sur-vival, and elicits dramatic localized expansions of axons and growth cones. Soluble GFR�1 mediates robust recruitment of c-Ret to lipid rafts via a novel mechanism requiring the c-Ret tyrosine kinase. Acti-vated c-Ret associates with different adaptor proteins inside and outside lipid rafts. These results provide an explanation for the tissue distribution of GFR�1, supporting the physiological importance of c-Ret acti-vation in trans as a novel mechanism to potentiate and diversify the biological responses to GDNF

    New Escherichia coli outer membrane proteins identified through prediction and experimental verification

    No full text
    Many new Escherichia coli outer membrane proteins have recently been identified by proteomics techniques. However, poorly expressed proteins and proteins expressed only under certain conditions may escape detection when wild-type cells are grown under standard conditions. Here, we have taken a complementary approach where candidate outer membrane proteins have been identified by bioinformatics prediction, cloned and overexpressed, and finally localized by cell fractionation experiments. Out of eight predicted outer membrane proteins, we have confirmed the outer membrane localization for five—YftM, YaiO, YfaZ, CsgF, and YliI—and also provide preliminary data indicating that a sixth—YfaL—may be an outer membrane autotransporter

    Effects of SecE Depletion on the Inner and Outer Membrane Proteomes of Escherichia coli▿ †

    No full text
    The Sec translocon is a protein-conducting channel that allows polypeptides to be transferred across or integrated into a membrane. Although protein translocation and insertion in Escherichia coli have been studied using only a small set of specific model substrates, it is generally assumed that most secretory proteins and inner membrane proteins use the Sec translocon. Therefore, we have studied the role of the Sec translocon using subproteome analysis of cells depleted of the essential translocon component SecE. The steady-state proteomes and the proteome dynamics were evaluated using one- and two-dimensional gel analysis, followed by mass spectrometry-based protein identification and extensive immunoblotting. The analysis showed that upon SecE depletion (i) secretory proteins aggregated in the cytoplasm and the cytoplasmic σ32 stress response was induced, (ii) the accumulation of outer membrane proteins was reduced, with the exception of OmpA, Pal, and FadL, and (iii) the accumulation of a surprisingly large number of inner membrane proteins appeared to be unaffected or increased. These proteins lacked large translocated domains and/or consisted of only one or two transmembrane segments. Our study suggests that several secretory and inner membrane proteins can use Sec translocon-independent pathways or have superior access to the remaining Sec translocons present in SecE-depleted cells
    corecore