91 research outputs found

    Role of NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 in clear cell renal cell carcinoma

    Get PDF
    PURPOSE We delineated the functions of the HIF1Ī± target NADH Dehydrogenase (Ubiquinone) 1 alpha subcomplex 4-like 2 (NDUFA4L2) in ccRCC and characterized NDUFA4L2 as a novel molecular target for ccRCC treatment. EXPERIMENTAL DESIGN We evaluated normal kidney and ccRCC patient microarray and RNAseq data from Oncomine and The Cancer Genome Atlas (TCGA) for NDUFA4L2 mRNA levels and the clinical implications of high NDUFA4L2 expression. Additionally, we examined normal kidney and ccRCC patient tissue samples, human ccRCC cell lines, and murine models of ccRCC for NDUFA4L2 mRNA and protein expression. Utilizing shRNA, we performed NDUFA4L2 knockdown experiments and analyzed the proliferation, clonogenicity, metabolite levels, cell structure, and autophagy in ccRCC cell lines in culture. RESULTS We found that NDUFA4L2 mRNA and protein are highly expressed in ccRCC samples but undetectable in normal kidney tissue samples, and that NDUFA4L2 mRNA expression correlates with tumor stage and lower overall survival. Additionally, we demonstrated that NDUFA4L2 is a HIF1Ī± target in ccRCC and that NDUFA4L2 knockdown has a profound anti-proliferative effect, alters metabolic pathways, and causes major stress in cultured RCC cells. CONCLUSIONS Collectively, our data show that NDUFA4L2 is a novel molecular target for ccRCC treatment

    CARM1 (PRMT4) acts as a transcriptional coactivator during retinoic acid-induced embryonic stem cell differentiation

    Get PDF
    Activation of the retinoic acid (RA) signaling pathway is important for controlling embryonic stem cell differentiation and development. Modulation of this pathway occurs through the recruitment of different epigenetic regulators at the retinoic acid receptors (RARs) located at retinoic acid responsive elements (RAREs) and/or RA-responsive regions of RA-regulated genes. Coactivator-associated arginine methyltransferase 1 (CARM1, PRMT4) is a protein arginine methyltransferase that also functions as a transcriptional coactivator. Previous studies highlight CARM1ā€™s importance in the differentiation of different cell types. We address CARM1 function during RA-induced differentiation of murine embryonic stem cells (mESCs) using shRNA lentiviral transduction and CRISPR/Cas9 technology to deplete CARM1 in mESCs. We identify CARM1 as a novel transcriptional coactivator required for the RA-associated decrease in Rex1 (Zfp42), and for the RA induction of a subset of RA-regulated genes, including CRABP2 and NR2F1 (Coup-TF1). Furthermore, CARM1 is required for mESCs to differentiate into extraembryonic endoderm in response to RA. We next characterize the epigenetic mechanisms that contribute to RA-induced transcriptional activation of CRABP2 and NR2F1 in mESCs and show for the first time that CARM1 is required for this activation. Collectively, our data demonstrate that CARM1 is required for transcriptional activation of a subset of RA target genes, and we uncover changes in the recruitment of Suz12 and the epigenetic H3K27me3 and H3K27ac marks at gene regulatory regions for CRABP2 and NR2F1 during RA-induced differentiation

    Effects of AM80 Compared to AC261066 in a High Fat Diet Mouse Model of Liver Disease

    Full text link
    The roles of retinoids in nonalcoholic fatty liver disease (NAFLD) remain unclear and a better understanding may lead to therapies that prevent or limit NAFLD progression. We examined the actions of retinoic acid receptor (RAR) agonists- AM80 for RARĪ±and AC261066 for RARĪ²2- in a murine model of NAFLD. We fed wild type C57Bl/6 mice a chow or a 45% high fat diet (HFD) for 12 weeks, followed by 4 additional weeks with the HFD+AM80; HFD +AC261066; or HFD. The HFD+AM80 group showed greater hyperglycemia and glucose intolerance compared to other groups. Histopathological evaluation of the livers showed the highest degree of steatosis, triglycerides levels, and inflammation, assessed by F4/80 staining, in the HFD+AM80-treated compared to the HFD, the HFD+AC261066, and chow-fed mice. Liver vitamin A (retinol (ROL)) and retinyl palmitate levels were markedly lower in all HFD groups compared to chow-fed controls. HFD+AC261066-treated mice showed higher levels of a key intracellular ROL transporter, retinol-binding protein-1 (RBP1) compared to the HFD and HFD+AM80 groups. In conclusion, these data demonstrate that the selective RARĪ±agonist AM80 exacerbates HFD-induced NAFLD and hyperglycemia. These findings should inform future studies examining the therapeutic potential of RAR agonists in HFDrelated disorders

    All-trans retinoic acid (ATRA)-induced TFEB expression is required for myeloid differentiation in acute promyelocytic leukemia (APL)

    Get PDF
    Ā© 2019 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Objective: In acute promyelocytic leukemia (APL), normal retinoid signaling is disrupted by an abnormal PML-RARĪ± fusion oncoprotein, leading to a block in cell differentiation. Therapeutic concentrations of all-trans-retinoic acid (ATRA) can restore retinoid-induced transcription and promote degradation of the PML-RARĪ± protein. Autophagy is a catabolic pathway that utilizes lysosomal machinery to degrade intracellular material and facilitate cellular re-modeling. Recent studies have identified autophagy as an integral component of ATRA-induced myeloid differentiation. Methods: As the molecular communication between retinoid signaling and the autophagy pathway is not defined, we performed RNA sequencing of NB4 APL cells treated with ATRA and examined autophagy-related transcripts. Results: ATRA altered the expression of >80 known autophagy-related transcripts, including the key transcriptional regulator of autophagy and lysosomal biogenesis, TFEB (11.5-fold increase). Induction of TFEB and its transcriptional target, sequestosome 1 (SQSTM1, p62), is reduced in ATRA-resistant NB4R cells compared to NB4 cells. TFEB knockdown in NB4 cells alters the expression of transcriptional targets of TFEB and reduces CD11b transcript levels in response to ATRA. Conclusions: We show for the first time that TFEB plays an important role in ATRA-induced autophagy during myeloid differentiation and that autophagy induction potentiates leukemic cell differentiation (Note: this study includes data obtained from NCT00195156, https://clinicaltrials.gov/show/NCT00195156)

    All-Trans-Retinoic Acid Combined With Valproic Acid Can Promote Differentiation in Myeloid Leukemia Cells by an Autophagy Dependent Mechanism

    Get PDF
    Acute myeloid leukemia (AML) is an aggressive blood cancer with an overall survival of 30%. One form of AML, acute promyelocytic leukemia (APL) has become more than 90% curable with differentiation therapy, consisting of all-trans-retinoic acid (ATRA) and arsenic trioxide (ATO). Application of differentiation therapy to other AML subtypes would be a major treatment advance. Recent studies have indicated that autophagy plays a key role in the differentiation of ATRA-responsive APL cells. In this study, we have investigated whether differentiation could be enhanced in ATRA resistant cells by promoting autophagy induction with valproic acid (VPA). ATRA sensitive (NB4) and resistant leukemia cells (NB4R and THP-1) were co-treated with ATRA and valproic acid, followed by assessment of autophagy and differentiation. The combination of VPA and ATRA induced autophagic flux and promoted differentiation in ATRA-sensitive and -resistant cell lines. shRNA knockdown of ATG7 and TFEB autophagy regulators impaired both autophagy and differentiation, demonstrating the importance of autophagy in the combination treatment. These data suggest that ATRA combined with valproic acid can promote differentiation in myeloid leukemia cells by mechanism involving autophagy

    NDUFA4L2 reduces mitochondrial respiration resulting in defective lysosomal trafficking in clear cell renal cell carcinoma

    Get PDF
    In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC

    Epigenetic regulation by RARĪ± maintains ligand-independent transcriptional activity

    Get PDF
    Retinoic acid receptors (RARs) Ī±, Ī² and Ī³ are key regulators of embryonic development. Hematopoietic differentiation is regulated by RARĪ±, and several types of leukemia show aberrant RARĪ± activity. Through microarray expression analysis, we identified transcripts differentially expressed between F9 wild-type (Wt) and RARĪ± knockout cells cultured in the absence or presence of the RAR-specific ligand all trans retinoic acid (RA). We validated the decreased Mest, Tex13, Gab1, Bcl11a, Tcfap2a and HMGcs1 transcript levels, and increased Slc38a4, Stmn2, RpL39l, Ref2L, Mobp and Rlf1 transcript levels in the RARa knockout cells. The decreased Mest and Tex13 transcript levels were associated with increased promoter CpG-island methylation and increased repressive histone modifications (H3K9me3) in RARĪ± knockout cells. Increased Slc38a4 and Stmn2 transcript levels were associated with decreased promoter CpG-island methylation and increased permissive histone modifications (H3K9/K14ac, H3K4me3) in RARĪ± knockout cells. We demonstrated specific association of RARĪ± and RXRĪ± with the Mest promoter. Importantly, stable expression of a dominant negative, oncogenic PMLā€“RARĪ± fusion protein in F9 Wt cells recapitulated the decreased Mest transcript levels observed in RARĪ± knockout cells. We propose that RARĪ± plays an important role in cellular memory and imprinting by regulating the CpG methylation status of specific promoter regions

    Polycomb recruitment attenuates retinoic acid-induced transcription of the bivalent NR2F1 gene

    Get PDF
    Polycomb proteins play key roles in mediating epigenetic modifications that occur during cell differentiation. The Polycomb repressive complex 2 (PRC2) mediates the tri-methylation of histone H3 lysine 27 (H3K27me3). In this study, we identify a distinguishing feature of two classes of PRC2 target genes, represented by the Nr2F1 (Coup-TF1) and the Hoxa5 gene, respectively. Both genes are transcriptionally activated by all-trans retinoic acid (RA) and display increased levels of the permissive H3K9/K14ac and tri-methylated histone H3 lysine 4 epigenetic marks in response to RA. However, while in response to RA the PRC2 and H3K27me3 marks are greatly decreased at the Hoxa5 promoter, these marks are initially increased at the Nr2F1 promoter. Functional depletion of the essential PRC2 protein Suz12 by short hairpin RNA (shRNA) technology enhanced the RA-associated transcription of Nr2F1, Nr2F2, Meis1, Sox9 and BMP2, but had no effect on the Hoxa5, Hoxa1, Cyp26a1, Cyp26b1 and RARĪ²2 transcript levels in wild-type embryonic stem cells. We propose that PRC2 recruitment attenuates the RA-associated transcriptional activation of a subset of genes. Such a mechanism would permit the fine-tuning of transcriptional networks during differentiation

    Induction of autophagy is a key component of all-trans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacological modulation

    Get PDF
    Acute myeloid leukemia (AML) is characterized by the accumulation of immature blood cell precursors in the bone marrow. Pharmacologically overcoming the differentiation block in this condition is an attractive therapeutic avenue, which has achieved success only in a subtype of AML, acute promyelocytic leukemia (APL). Attempts to emulate this success in other AML subtypes have thus far been unsuccessful. Autophagy is a conserved protein degradation pathway with important roles in mammalian cell differentiation, particularly within the hematopoietic system. In the study described here, we investigated the functional importance of autophagy in APL cell differentiation. We found that autophagy is increased during all-trans-retinoic acid (ATRA)-induced granulocytic differentiation of the APL cell line NB4 and that this is associated with increased expression of LC3II and GATE-16 proteins involved in autophagosome formation. Autophagy inhibition, using either drugs (chloroquine/3-methyladenine) or short-hairpin RNA targeting the essential autophagy gene ATG7, attenuates myeloid differentiation. Importantly, we found that enhancing autophagy promotes ATRA-induced granulocytic differentiation of an ATRA-resistant derivative of the non-APL AML HL60 cell line (HL60-Diff-R). These data support the development of strategies to stimulate autophagy as a novel approach to promote differentiation in AML

    The KDM5B and KDM1A lysine demethylases cooperate in regulating androgen receptor expression and signalling in prostate cancer

    Get PDF
    Histone H3 lysine 4 (H3K4) methylation is key epigenetic mark associated with active transcription and is a substrate for the KDM1A/LSD1 and KDM5B/JARID1B lysine demethylases. Increased expression of KDM1A and KDM5B is implicated in many cancer types, including prostate cancer (PCa). Both KDM1A and KDM5B interact with AR and promote androgen regulated gene expression. For this reason, there is great interested in the development of new therapies targeting KDM1A and KDM5B, particularly in the context of castrate resistant PCa (CRPC), where conventional androgen deprivation therapies and androgen receptor signalling inhibitors are no longer effective. As there is no curative therapy for CRPC, new approaches are urgently required to suppress androgen signalling that prevent, delay or reverse progression to the castrate resistant state. While the contribution of KDM1A to PCa is well established, the exact contribution of KDM5B to PCa is less well understood. However, there is evidence that KDM5B is implicated in numerous pro-oncogenic mechanisms in many different types of cancer, including the hypoxic response, immune evasion and PI3/AKT signalling. Here we elucidate the individual and cooperative functions of KDM1A and KDM5B in PCa. We show that KDM5B mRNA and protein expression is elevated in localised and advanced PCa. We show that the KDM5 inhibitor, CPI-455, impairs androgen regulated transcription and alternative splicing. Consistent with the established role of KDM1A and KDM5B as AR coregulators, we found that individual pharmacologic inhibition of KDM1A and KDM5 by namoline and CPI-455 respectively, impairs androgen regulated transcription. Notably, combined inhibition of KDM1A and KDM5 downregulates AR expression in CRPC cells. Furthermore, combined KDM1A and KDM5 inhibition impairs PCa cell proliferation and invasion more than individual inhibition of KDM1A and KDM5B. Collectively our study has identified individual and cooperative mechanisms involving KDM1A and KDM5 in androgen signalling in PCa. Our findings support the further development of KDM1A and KDM5B inhibitors to treat advanced PCa. Further work is now required to confirm the therapeutic feasibility of combined inhibition of KDM1A and KDM5B as a novel therapeutic strategy for targeting AR positive CRPC
    • ā€¦
    corecore