16 research outputs found

    Fermentation of Microalgal Biomass for Innovative Food Production

    Get PDF
    Fermentation is an ancient method used worldwide to process and preserve food while enhancing its nutraceutical profile. Alga‐based fermented products have recently been developed and tested due to growing interest in healthy sustainable diets, which demands the development of innovative practices in food production, operating for both human health and Earth sustainability. Algae, particularly microalgae such as Arthrospira platensis, Chlorella vulgaris, and Dunaliella salina, are already cultivated as sources of food due to their valuable compounds, including proteins, pigments, lipids, carotenoids, polyunsaturated fatty acids, steroids, and vitamins. Due to their nutritional composition, functional diversity, and flexible metabolism, microalgae represent good fermentation substrates for lactic acid bacteria (LAB) and yeasts. This review presents an overview of the scientific studies on microalga fermentation underlining microalgae’s properties and health benefits coupled with the advantages of LAB and yeast fermentation. The potential applications of and future perspectives on such functional foods are discussed

    Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19.

    Get PDF
    Objectives To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Methods Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Results Mean gestational age at diagnosis was 30.6+/-9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; pPeer reviewe

    Screening for tolerance to natural phenols of different algal species: Toward the phycoremediation of olive mill wastewater

    No full text
    Olive Mill Wastewater (OMWW) is a by-product of olive oil production and it is rich in nutrients (e.g. P, N and K) and phenolic compounds. These latter are aromatic compounds, and their concentrations can reach up to 11 g L−1 in OMWW. A complete remediation of OMWW is required since phenols are known to cause toxicity once released in the environment: particularly, their effect on microorganisms is species-specific and primarily depends on the chemical structure of the compound. Microalgae have already been tested to remediate OMWW, data are promising but how different phenols affect algal growth is still poorly known. In this work, ten microalgal species belonging to different phylogenetic groups and natural habitats, were grown in the presence of three phenolic compounds found in OMWW (tyrosol, coumaric acid, caffeic acid). Algal growth and removal of phenolic compounds were assessed. Tyrosol was the only compound allowing growth of each tested microalga similarly to what observed in control media. Growth of microalgae and removal of phenolic compounds were not always related, and a multi-step phenolic removal mechanism was suggested. Species such as Nannochloropsis salina and Porphyridium purpureum rapidly died after the addition of coumaric acid or caffeic acid but a high removal percentage (60–100 %) of the phenols was still observed and it was likely due to their absorbance onto the cell surface. On average, freshwater species showed a higher growth performance compared to the one of marine species; in particular, Tetradesmus obliquus and Anabaena sp. showed the best results. This work elucidates a species-specific effect for each phenolic compound on algal growth and it also highlights that growth and removal are not related phenomena

    Pressure solution inhibition in a limestone–chert composite multilayer: Implications for the seismic cycle and fluid flow

    No full text
    Pressure solution seams (PSSs) are frequent features in carbonate rocks undergoing tectonic shortening. In particular, pervasive, anticline-axis-parallel, bed-normal PSSs are known to develop during layer-parallel-shortening of (marly) carbonate rocks in fold-thrust belts. These pressure solution features can impact subsequent fracture development, fluid circulation, and strain localization including the seismic cycle. It is here demonstrated that the occurrence of frequent and continuous chert layers may strengthen a limestone sequence and inhibit pressure solution under layer-parallel-shortening. Field observations and laboratory determinations are reported from marly limestone with continuous chert layers of the Scaglia Fm. (Cingoli anticline, northern Apennines, Italy) exhumed from a depth of c. 1 km. In these outcrops, bed-normal solution seams do not occur or they occur only where infrequent chert layers have been shortened by small thrusts. In analogy with laminae-reinforced composite materials, a model is developed explaining the field observations with the strengthening effect of chert in the chert–limestone composite multilayer. During layer-parallel-shortening, the composite multilayer deforms under equal strain boundary conditions. In this situation, the tectonic load is mostly supported by the stiff and frequent chert layers and the strain of the whole chert–limestone composite remains in the elastic field, so that pressure solution seam development is prevented in the limestone beds. Our model may be applied down to a depth of a few kilometers in the upper crust that is relevant for the seismic cycle and fluid flow

    Reconstructing the Belbaşhanı Pumice Plinian eruption, Hasandağ Volcano, Turkey

    No full text
    Hasandağ volcano (Central Anatolia, Turkey) has recently underwent an increase in local seismicity and fumarolic activ- ity since 2013. In the past, this volcano has produced multiple large explosive eruptions during the last million years. The Belbaşhanı Pumice is the product of a sub-Plinian to Plinian eruption dated at ~ 417 ± 20.5 ka (40Ar/39Ar). Here, we present a complete volcanological study including stratigraphy, glass chemistry, pumice morphology, geochronology, and eruption source parameters with the associated uncertainties, to characterize the Belbaşhanı Pumice eruption. The eruption involved a column of 18–29 km in height, with the main dispersal axis towards the northeast. A pumice layer up to ~ 17-m-thick accu- mulated in proximal deposits along the Belbaşhanı path, and up to 2-m-thick in medial-distal areas (~ 18 km northeast from the vent). The high and tubular vesicularity of the pumice clasts indicates that the Belbaşhanı eruption was predominantly magmatic. The bulk volume of the Belbaşhanı Pumice fallout deposit has been estimated as 0.5 and 8 km3 (with ~ 2 km3 being the mean value), which corresponds to Volcanic Explosivity Index (VEI) of at least 4 and up to 6. Both isopach and isopleth maps indicate that the volcanic vent may have been located at the intersection of the Tuz Gölü fault and Ulukışla caldera, within the Hasandağ volcanic complex. The glass composition of Belbaşhanı Pumice confirms that the eruption belongs to the Hasandağ magmatic system. The reconstruction of the Belbaşhanı Pumice eruption represents an essential baseline in providing volcanological constraints for further investigations of tephra fallout hazard assessment in Central Anatolia, especially considering that a new Plinian eruption cannot be ruled out at Hasandağ volcano in the future. The chemical and geochronological datasets presented here could aid in refining tephrochronological correlations, with the goal of synchronizing paleoenvironmental and paleoclimatic records alongside archaeological sites

    8-Alkylthio-6-thio-substituted theophylline analogues as selective noncompetitive progesterone receptor antagonists

    No full text
    The progesterone receptor (PR) plays a key role in reproduction and is important in cancers of the reproductive tract. Current PR antagonists usually compete for progestin binding in the PR ligand-binding pocket and often exhibit cross-binding with other members of the steroid receptor family. Using stably transfected cells expressing reporter genes, a set of ~150 theophylline analogues were screened for their ability to inhibit progesterone, estrogen, glucocorticoid and androgen signaling. The structure-activity studies presented here identify branched 8-alkylthio-6-thio-substitutions of theophylline as selective PR inhibitors. 6-thio-8-(2-ethylbutyl)thiotheophylline (51), the most extensively studied derivative, does not act by competing with progestins for binding in the ligand-binding pocket of PR. It demonstrated the ability to inhibit the mouse mammary tumor virus (MMTV)-luciferase reporter and endogenous PR-regulated alkaline phosphatase activity in T47D breast cancer cells. Compound 51 is the lead member of a novel class of PR inhibitors that act outside the PR ligand-binding pocket, thus serving as a novel probe to investigate PR action and a lead for further development

    Biomarkers of Prognosis and Efficacy of Anti-angiogenic Therapy in Metastatic Clear Cell Renal Cancer

    No full text
    In the last decades, the prognosis of metastatic renal cell carcinoma (mRCC) has remarkably improved following the advent of the “targeted therapy” era. The expanding knowledge on the prominent role played by angiogenesis in RCC pathogenesis has led to approval of multiple anti-angiogenic agents such as sunitinib, pazopanib, axitinib, cabozantinib, sorafenib, and bevacizumab. These agents can induce radiological responses and delay cancer progression for months or years before onset of resistance, with a clinically meaningful activity. The need for markers of prognosis and efficacy of anti-angiogenic agents has become more compelling as novel systemic immunotherapy agents have also been approved in RCC and can be administered as an alternative to angiogenesis inhibitors. Anti PD-1 monoclonal antibody nivolumab has been approved in the second-line setting after tyrosine kinase inhibitors failure, while combination of nivolumab plus anti CTLA-4 monoclonal antibody ipilimumab has been approved as first-line therapy of RCC patients at intermediate or poor prognosis. In this review article, biomarkers of prognosis and efficacy of antiangiogenic therapies are summarized with a focus on those that have the potential to affect treatment decision-making in RCC. Biomarkers predictive of toxicity of anti-angiogenic agents have also been discussed
    corecore