2,342 research outputs found
Ultrasound Findings of Delayed‐Onset Muscle Soreness
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135570/1/jum201635112517.pd
Analysis of CUL-5 expression in breast epithelial cells, breast cancer cell lines, normal tissues and tumor tissues
BACKGROUND: The chromosomal location of CUL-5 (11q 22-23) is associated with LOH in breast cancer, suggesting that CUL-5 may be a tumor suppressor. The purpose of this research was to determine if there is differential expression of CUL-5 in breast epithelial cells versus breast cancer cell lines, and normal human tissues versus human tumors. The expression of CUL-5 in breast epithelial cells (HMEC, MCF-10A), and breast cancer cells (MCF-7, MDA-MB-231) was examined using RT-PCR, Northern blot analysis, and Western blot analysis. The expression of mRNA for other CUL family members (CUL-1, -2, -3, -4A, and -4B) in these cells was evaluated by RT-PCR. A normal human tissue expression array and a cancer profiling array were used to examine CUL-5 expression in normal human tissues and matched normal tissues versus tumor tissues, respectively. RESULTS: CUL-5 is expressed at the mRNA and protein levels by breast epithelial cells (HMEC, MCF-10A) and breast cancer cells (MCF-7, MDA-MB-231). These cells also express mRNA for other CUL family members. The normal human tissue expression array revealed that CUL-5 is widely expressed. The cancer profiling array revealed that 82% (41/50) of the breast cancers demonstrated a decrease in CUL-5 expression versus the matched normal tissue. For the 50 cases of matched breast tissue there was a statistically significant ~2.2 fold decreased expression of CUL-5 in tumor tissue versus normal tissue (P < 0.0001). CONCLUSIONS: The data demonstrate no apparent decrease in CUL-5 expression in the breast cancer cell lines (MCF-7, MDA-MB-231) versus the breast epithelial cells (HMEC, MCF-10A). The decrease in CUL-5 expression in breast tumor tissue versus matched normal tissue supports the hypothesis that decreased expression of CUL-5 may play a role in breast tumorigenesis
Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps
<p>Abstract</p> <p>Background</p> <p>We and others have demonstrated previously that ghrelin receptor (<it>GhrR</it>) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed <it>GhrR </it>KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in <it>GhrR </it>KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity.</p> <p>Results</p> <p>Consistent with glucose tolerance-test data, in HG clamp experiments, <it>GhrR </it>KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1<sup>st </sup>phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, <it>GhrR </it>KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed <it>GhrR </it>KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed <it>GhrR </it>KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. <it>GhrR </it>KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in <it>GhrR </it>KO mice relative to WT mice.</p> <p>Conclusions</p> <p>These results indicate that improved glucose homeostasis of <it>GhrR </it>KO mice is characterized by robust improvements of glucose disposal in both normal and metabolically challenged states, relative to WT controls. <it>GhrR </it>KO mice have an intact 1<sup>st </sup>phase insulin response but require significantly less insulin for glucose disposal. Our experiments reveal that the insulin sensitivity of <it>GhrR </it>KO mice is due to both BW independent and dependent factors. We also provide several lines of evidence that a key feature of the <it>GhrR </it>KO mouse is maintenance of hepatic insulin sensitivity during metabolic challenge.</p
Insulin-like growth factor 2 (IGF2) protects against Huntington's disease through the extracellular disposal of protein aggregates
Impaired neuronal proteostasis is a salient feature of many neurodegenerative diseases, highlighting alterations in the function of the endoplasmic reticulum (ER). We previously reported that targeting the transcription factor XBP1, a key mediator of the ER stress response, delays disease progression and reduces protein aggregation in various models of neurodegeneration. To identify disease modifier genes that may explain the neuroprotective effects of XBP1 deficiency, we performed gene expression profiling of brain cortex and striatum of these animals and uncovered insulin-like growth factor 2 (Igf2) as the major upregulated gene. Here, we studied the impact of IGF2 signaling on protein aggregation in models of Huntington's disease (HD) as proof of concept. Cell culture studies revealed that IGF2 treatment decreases the load of intracellular aggregates of mutant huntingtin and a polyglutamine peptide. These results were validated using induced pluripotent stem cells (iPSC)-derived medium spiny neurons from HD patients and spinocerebellar ataxia cases. The reduction in the levels of mutant huntingtin was associated with a decrease in the half-life of the intracellular protein. The decrease in the levels of abnormal protein aggregation triggered by IGF2 was independent of the activity of autophagy and the proteasome pathways, the two main routes for mutant huntingtin clearance. Conversely, IGF2 signaling enhanced the secretion of soluble mutant huntingtin species through exosomes and microvesicles involving changes in actin dynamics. Administration of IGF2 into the brain of HD mice using gene therapy led to a significant decrease in the levels of mutant huntingtin in three different animal models. Moreover, analysis of human postmortem brain tissue and blood samples from HD patients showed a reduction in IGF2 level. This study identifies IGF2 as a relevant factor deregulated in HD, operating as a disease modifier that buffers the accumulation of abnormal protein species
Nanoparticle Induced Cell Magneto-Rotation: Monitoring Morphology, Stress and Drug Sensitivity of a Suspended Single Cancer Cell
Single cell analysis has allowed critical discoveries in drug testing, immunobiology and stem cell research. In addition, a change from two to three dimensional growth conditions radically affects cell behavior. This already resulted in new observations on gene expression and communication networks and in better predictions of cell responses to their environment. However, it is still difficult to study the size and shape of single cells that are freely suspended, where morphological changes are highly significant. Described here is a new method for quantitative real time monitoring of cell size and morphology, on single live suspended cancer cells, unconfined in three dimensions. The precision is comparable to that of the best optical microscopes, but, in contrast, there is no need for confining the cell to the imaging plane. The here first introduced cell magnetorotation (CM) method is made possible by nanoparticle induced cell magnetization. By using a rotating magnetic field, the magnetically labeled cell is actively rotated, and the rotational period is measured in real-time. A change in morphology induces a change in the rotational period of the suspended cell (e.g. when the cell gets bigger it rotates slower). The ability to monitor, in real time, cell swelling or death, at the single cell level, is demonstrated. This method could thus be used for multiplexed real time single cell morphology analysis, with implications for drug testing, drug discovery, genomics and three-dimensional culturing
Transcriptome Analysis of Mouse Stem Cells and Early Embryos
Understanding and harnessing cellular potency are fundamental in biology and are also critical to the future therapeutic use of stem cells. Transcriptome analysis of these pluripotent cells is a first step towards such goals. Starting with sources that include oocytes, blastocysts, and embryonic and adult stem cells, we obtained 249,200 high-quality EST sequences and clustered them with public sequences to produce an index of approximately 30,000 total mouse genes that includes 977 previously unidentified genes. Analysis of gene expression levels by EST frequency identifies genes that characterize preimplantation embryos, embryonic stem cells, and adult stem cells, thus providing potential markers as well as clues to the functional features of these cells. Principal component analysis identified a set of 88 genes whose average expression levels decrease from oocytes to blastocysts, stem cells, postimplantation embryos, and finally to newborn tissues. This can be a first step towards a possible definition of a molecular scale of cellular potency. The sequences and cDNA clones recovered in this work provide a comprehensive resource for genes functioning in early mouse embryos and stem cells. The nonrestricted community access to the resource can accelerate a wide range of research, particularly in reproductive and regenerative medicine
Mutations of the Mouse ELMO Domain Containing 1 Gene (Elmod1) Link Small GTPase Signaling to Actin Cytoskeleton Dynamics in Hair Cell Stereocilia
Stereocilia, the modified microvilli projecting from the apical surfaces of the sensory hair cells of the inner ear, are essential to the mechanoelectrical transduction process underlying hearing and balance. The actin-filled stereocilia on each hair cell are tethered together by fibrous links to form a highly patterned hair bundle. Although many structural components of hair bundles have been identified, little is known about the signaling mechanisms that regulate their development, morphology, and maintenance. Here, we describe two naturally occurring, allelic mutations that result in hearing and balance deficits in mice, named roundabout (rda) and roundabout-2J (rda2J). Positional cloning identified both as mutations of the mouse ELMO domain containing 1 gene (Elmod1), a poorly characterized gene with no previously reported mutant phenotypes. The rda mutation is a 138 kb deletion that includes exons 1–5 of Elmod1, and rda2J is an intragenic duplication of exons 3–8 of Elmod1. The deafness associated with these mutations is caused by cochlear hair cell dysfunction, as indicated by conspicuous elongations and fusions of inner hair cell stereocilia and progressive degeneration of outer hair cell stereocilia. Mammalian ELMO-family proteins are known to be involved in complexes that activate small GTPases to regulate the actin cytoskeleton during phagocytosis and cell migration. ELMOD1 and ELMOD2 recently were shown to function as GTPase-activating proteins (GAPs) for the Arf family of small G proteins. Our finding connecting ELMOD1 deficiencies with stereocilia dysmorphologies thus establishes a link between the Ras superfamily of small regulatory GTPases and the actin cytoskeleton dynamics of hair cell stereocilia
Analysis of the common genetic component of large-vessel vasculitides through a meta- Immunochip strategy
Giant cell arteritis (GCA) and Takayasu's arteritis (TAK) are major forms of large-vessel vasculitis (LVV) that share clinical features. To evaluate their genetic similarities, we analysed Immunochip genotyping data from 1,434 LVV patients and 3,814 unaffected controls. Genetic pleiotropy was also estimated. The HLA region harboured the main disease-specific associations. GCA was mostly associated with class II genes (HLA-DRB1/HLA-DQA1) whereas TAK was mostly associated with class I genes (HLA-B/MICA). Both the statistical significance and effect size of the HLA signals were considerably reduced in the cross-disease meta-analysis in comparison with the analysis of GCA and TAK separately. Consequently, no significant genetic correlation between these two diseases was observed when HLA variants were tested. Outside the HLA region, only one polymorphism located nearby the IL12B gene surpassed the study-wide significance threshold in the meta-analysis of the discovery datasets (rs755374, P?=?7.54E-07; ORGCA?=?1.19, ORTAK?=?1.50). This marker was confirmed as novel GCA risk factor using four additional cohorts (PGCA?=?5.52E-04, ORGCA?=?1.16). Taken together, our results provide evidence of strong genetic differences between GCA and TAK in the HLA. Outside this region, common susceptibility factors were suggested, especially within the IL12B locus
- …