537 research outputs found

    Insight into Shiga toxin genes encoded by Escherichia coli O157 from whole genome sequencing

    Get PDF
    The ability of Shiga toxin-producing Escherichia coli (STEC) to cause severe illness in humans is determined by multiple host factors and bacterial characteristics, including Shiga toxin (Stx) subtype. Given the link between Stx2a subtype and disease severity, we sought to identify the stx subtypes present in whole genome sequences (WGS) of 444 isolates of STEC O157. Difficulties in assembling the stx genes in some strains were overcome by using two complementary bioinformatics methods: mapping and de novo assembly. We compared the WGS analysis with the results obtained using a PCR approach and investigated the diversity within and between the subtypes. All strains of STEC O157 in this study had stx1a, stx2a or stx2c or a combination of these three genes. There was over 99% (442/444) concordance between PCR and WGS. When common source strains were excluded, 236/349 strains of STEC O157 had multiple copies of different Stx subtypes and 54 had multiple copies of the same Stx subtype. Of those strains harbouring multiple copies of the same Stx subtype, 33 had variants between the alleles while 21 had identical copies. Strains harbouring Stx2a only were most commonly found to have multiple alleles of the same subtype (42%). Both the PCR and WGS approach to stx subtyping provided a good level of sensitivity and specificity. In addition, the WGS data also showed there were a significant proportion of strains harbouring multiple alleles of the same Stx subtype associated with clinical disease in England

    Open-source genomic analysis of Shiga-toxin–producing E. coli O104:H4

    Get PDF
    An outbreak caused by Shiga-toxin–producing Escherichia coli O104:H4 occurred in Germany in May and June of 2011, with more than 3000 persons infected. Here, we report a cluster of cases associated with a single family and describe an open-source genomic analysis of an isolate from one member of the family. This analysis involved the use of rapid, bench-top DNA sequencing technology, open-source data release, and prompt crowd-sourced analyses. In less than a week, these studies revealed that the outbreak strain belonged to an enteroaggregative E. coli lineage that had acquired genes for Shiga toxin 2 and for antibiotic resistance

    Establishing Relevant ADC-based Texture Analysis Metrics for Quantifying Early Treatment-Induced Changes in Head and Neck Squamous Cell Carcinomas

    Get PDF
    Purpose: The purpose of this study is to identify which texture analysis metrics calculated from apparent diffusion coefficient (ADC) maps from patients with head and neck squamous cell carcinomas (HNSCC) provide quantifiable measures of tumor physiology changes. We discerned which imaging metrics were relevant using baseline agreement and variations during early treatment. Methods: For selective patients with stages II-IV HNSCC, ADC maps were generated from two baselines, taken 1 week apart, and one early treatment scan, obtained during the 2nd week of curative-intent chemoradiation therapy. Regions of interest (ROI), consisting of primary and nodal disease were drawn onto resampled ADC maps. Four 3D texture matrices describing local and regional relationships between voxel intensities in the ROIs were generated. From these, 38 texture metrics and 7 histogram features were calculated for each patient, including the mean and median ADC. Agreement between the two baseline measures was estimated with the intra-class correlation coefficient (ICC). For each metric with an ICC≥0.80, the Wilcoxon signed-rank test was used to test if the difference between the mean of the baselines and the early treatment was non-zero. Results: Texture analysis was implemented on nine patients that had both baselines and early treatment images. Due to baseline agreement, only 9 of the 45 metrics had an ICC ≥0.80, including ADC mean and median. Six of these 9 metrics had a p-value \u3c 0.05. Only 1 of the 9 metrics remained of interest, after applying the Holm correction to the alpha levels: the run length non-uniformity metric (p = 0.004) in the Gray Level Run Length Matrix. Conclusion: The feasibility of texture analysis is dependent on the baseline agreement of each metric, which disqualifies many texture characteristics. However, metrics with high ICC have potential to provide additional quantitative information for the assessment of early treatment changes for HNSCC

    Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella

    Get PDF
    Background: Foodborne outbreaks of Salmonella remain a pressing public health concern. We recently detected a large outbreak of Salmonella enterica serovar Enteritidis phage type 14b affecting more than 30 patients in our hospital. This outbreak was linked to community, national and European-wide cases. Hospital patients with Salmonella are at high risk, and require a rapid response. We initially investigated this outbreak by whole-genome sequencing using a novel rapid protocol on the Illumina MiSeq; we then integrated these data with whole-genome data from surveillance sequencing, thereby placing the outbreak in a national context. Additionally, we investigated the potential of a newly released sequencing technology, the MinION from Oxford Nanopore Technologies, in the management of a hospital outbreak of Salmonella. Results: We demonstrate that rapid MiSeq sequencing can reduce the time to answer compared to the standard sequencing protocol with no impact on the results. We show, for the first time, that the MinION can acquire clinically relevant information in real time and within minutes of a DNA library being loaded. MinION sequencing permits confident assignment to species level within 20 min. Using a novel streaming phylogenetic placement method samples can be assigned to a serotype in 40 min and determined to be part of the outbreak in less than 2 h. Conclusions: Both approaches yielded reliable and actionable clinical information on the Salmonella outbreak in less than half a day. The rapid availability of such information may facilitate more informed epidemiological investigations and influence infection control practices

    Diagnostic applications of next generation sequencing: working towards quality standards

    Get PDF
    Over the past 6 years, next generation sequencing (NGS) has been established as a valuable high-throughput method for research in molecular genetics and has successfully been employed in the identification of rare and common genetic variations. All major NGS technology companies providing commercially available instruments (Roche 454, Illumina, Life Technologies) have recently marketed bench top sequencing instruments with lower throughput and shorter run times, thereby broadening the applications of NGS and opening the technology to the potential use for clinical diagnostics. Although the high expectations regarding the discovery of new diagnostic targets and an overall reduction of cost have been achieved, technological challenges in instrument handling, robustness of the chemistry and data analysis need to be overcome. To facilitate the implementation of NGS as a routine method in molecular diagnostics, consistent quality standards need to be developed. Here the authors give an overview of the current standards in protocols and workflows and discuss possible approaches to define quality criteria for NGS in molecular genetic diagnostics

    Things change: Women’s and men’s marital disruption dynamics in Italy during a time of social transformations, 1970-2003

    Get PDF
    We study women’s and men’s marital disruption in Italy between 1970 and 2003. By applying an event-history analysis to the 2003 Italian variant of the Generations and Gender Survey we found that the spread of marital disruption started among middle-highly educated women. Then in recent years it appears that less educated women have also been able to dissolve their unhappy unions. Overall we can see the beginning of a reversed educational gradient from positive to negative. In contrast the trend in men’s marital disruption risk appears as a change over time common to all educational groups, although with persisting educational differentials.determinants, educational differences, event history analysis, gender difference, Italy, marital disruption

    A review of bioinformatics tools for bio-prospecting from metagenomic sequence data

    Get PDF
    The microbiome can be defined as the community of microorganisms that live in a particular environment. Metagenomics is the practice of sequencing DNA from the genomes of all organisms present in a particular sample, and has become a common method for the study of microbiome population structure and function. Increasingly, researchers are finding novel genes encoded within metagenomes, many of which may be of interest to the biotechnology and pharmaceutical industries. However, such “bioprospecting” requires a suite of sophisticated bioinformatics tools to make sense of the data. This review summarizes the most commonly used bioinformatics tools for the assembly and annotation of metagenomic sequence data with the aim of discovering novel genes

    Extreme genetic fragility of the HIV-1 capsid

    Get PDF
    Genetic robustness, or fragility, is defined as the ability, or lack thereof, of a biological entity to maintain function in the face of mutations. Viruses that replicate via RNA intermediates exhibit high mutation rates, and robustness should be particularly advantageous to them. The capsid (CA) domain of the HIV-1 Gag protein is under strong pressure to conserve functional roles in viral assembly, maturation, uncoating, and nuclear import. However, CA is also under strong immunological pressure to diversify. Therefore, it would be particularly advantageous for CA to evolve genetic robustness. To measure the genetic robustness of HIV-1 CA, we generated a library of single amino acid substitution mutants, encompassing almost half the residues in CA. Strikingly, we found HIV-1 CA to be the most genetically fragile protein that has been analyzed using such an approach, with 70% of mutations yielding replication-defective viruses. Although CA participates in several steps in HIV-1 replication, analysis of conditionally (temperature sensitive) and constitutively non-viable mutants revealed that the biological basis for its genetic fragility was primarily the need to coordinate the accurate and efficient assembly of mature virions. All mutations that exist in naturally occurring HIV-1 subtype B populations at a frequency >3%, and were also present in the mutant library, had fitness levels that were >40% of WT. However, a substantial fraction of mutations with high fitness did not occur in natural populations, suggesting another form of selection pressure limiting variation in vivo. Additionally, known protective CTL epitopes occurred preferentially in domains of the HIV-1 CA that were even more genetically fragile than HIV-1 CA as a whole. The extreme genetic fragility of HIV-1 CA may be one reason why cell-mediated immune responses to Gag correlate with better prognosis in HIV-1 infection, and suggests that CA is a good target for therapy and vaccination strategies
    corecore