347 research outputs found
Recommended from our members
Mechanical Robustness of Graphene on Flexible Transparent Substrates
This study reports on a facile and widely applicable method of transferring chemical vapor deposited (CVD) graphene uniformly onto optically transparent and mechanically flexible substrates using commercially available, low-cost ultraviolet adhesive (UVA) and hot-press lamination (HPL). We report on the adhesion potential between the graphene and the substrate, and we compare these findings with those of the more commonly used cast polymer handler transfer processes. Graphene transferred with the two proposed methods showed lower surface energy and displayed a higher degree of adhesion (UVA: 4.40 ± 1.09 N/m, HPL: 0.60 ± 0.26 N/m) compared to equivalent CVD-graphene transferred using conventional poly(methyl methacrylate) (PMMA: 0.44 ± 0.06 N/m). The mechanical robustness of the transferred graphene was investigated by measuring the differential resistance as a function of bend angle and repeated bend–relax cycles across a range of bend radii. At a bend angle of 100° and a 2.5 mm bend radius, for both transfer techniques, the normalized resistance of graphene transferred on polyethylene terephthalate (PET) was around 80 times less than that of indium–tin oxide on PET. After 104 bend cycles, the resistance of the transferred graphene on PET using UVA and HPL was found to be, on average, around 25.5 and 8.1% higher than that of PMMA-transferred graphene, indicating that UVA- and HPL-transferred graphene are more strongly adhered compared to PMMA-transferred graphene. The robustness, in terms of maintained electrical performance upon mechanical fatigue, of the transferred graphene was around 60 times improved over ITO/PET upon many thousands of repeated bending stress cycles. On the basis of present production methods, the development of the next-generation of highly conformal, diverse form factor electronics, exploiting the emerging family of two-dimensional materials, necessitates the development of simple, low-cost, and mechanically robust transfer processes; the developed UVA and HPL approaches show significant potential and allow for large-area-compatible, near-room temperature transfer of graphene onto a diverse range of polymeric supports
Influence of magnetism on vertical hopping transport in CrSBr
We investigate the c-direction conduction in CrSBr in the linear regime, which is not accessible in other van der Waals (vdW) magnetic semiconductors, because of the unmeasurably low current. The resistivity, which is 108-1011 times larger than in the a and b directions, exhibits magnetic state dependent thermally activated and variable range hopping transport. In the spin-flip phase at 2 T, the activation energy is 20 meV lower than in the antiferromagnetic state due to a downshift of the conduction band edge, in agreement with ab initio calculations. In the variable range hopping regime, the average hopping length decreases from twice the interlayer distance to the interlayer distance at 2 T because in the antiferromagnetic state the large exchange energy impedes electrons hopping between adjacent layers. Our work demonstrates that the linear transport regime provides new information about electronic processes in vdW magnetic semiconductors and shows how magnetism influences these processes both in real and reciprocal space
Safety of 41 flavouring compounds providing a herbal flavour and belonging to different chemical groups for use as feed additives in all animal species (FEFANA asbl)
: Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety of 41 compounds to provide a Herbal flavour and belonging to different chemical groups, when used as sensory additives in feed for all animal species. Fourteen out of the 41 compounds were tested in tolerance studies in chickens for fattening, piglets, cattle for fattening and Atlantic salmon. No adverse effects were observed in the tolerance studies at 10-fold the intended level. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the 14 tested compounds were safe for these species at the proposed use level and conclusions were extrapolated to all animal species. For the remaining 27 compounds, read-across from structurally similar compounds tested in tolerance trials and belonging to the same chemical group was applied. The FEEDAP Panel concluded that these 27 compounds were safe for all animal species at the proposed use level. No safety concern would arise for the consumer and the environment from the use of the 41 compounds up to the maximum proposed use level in feed
Planck intermediate results. VIII. Filaments between interacting clusters
About half of the baryons of the Universe are expected to be in the form of
filaments of hot and low density intergalactic medium. Most of these baryons
remain undetected even by the most advanced X-ray observatories which are
limited in sensitivity to the diffuse low density medium. The Planck satellite
has provided hundreds of detections of the hot gas in clusters of galaxies via
the thermal Sunyaev-Zel'dovich (tSZ) effect and is an ideal instrument for
studying extended low density media through the tSZ effect. In this paper we
use the Planck data to search for signatures of a fraction of these missing
baryons between pairs of galaxy clusters. Cluster pairs are good candidates for
searching for the hotter and denser phase of the intergalactic medium (which is
more easily observed through the SZ effect). Using an X-ray catalogue of
clusters and the Planck data, we select physical pairs of clusters as
candidates. Using the Planck data we construct a local map of the tSZ effect
centered on each pair of galaxy clusters. ROSAT data is used to construct X-ray
maps of these pairs. After having modelled and subtracted the tSZ effect and
X-ray emission for each cluster in the pair we study the residuals on both the
SZ and X-ray maps. For the merging cluster pair A399-A401 we observe a
significant tSZ effect signal in the intercluster region beyond the virial
radii of the clusters. A joint X-ray SZ analysis allows us to constrain the
temperature and density of this intercluster medium. We obtain a temperature of
kT = 7.1 +- 0.9, keV (consistent with previous estimates) and a baryon density
of (3.7 +- 0.2)x10^-4, cm^-3. The Planck satellite mission has provided the
first SZ detection of the hot and diffuse intercluster gas.Comment: Accepted by A&
Interplay between Structure and Dynamics in Chitosan Films Investigated with Solid-State NMR, Dynamic Mechanical Analysis, and X-ray Diffraction
Modern solid-state NMR techniques, combined with X-ray diffraction, revealed the molecular origin of the difference in mechanical properties of self-associated chitosan films. Films cast from acidic aqueous solutions were compared before and after neutralization, and the role of the counterion (acetate vs Cl⁻) was investigated. There is a competition between local structure and long-range order. Hydrogen bonding gives good mechanical strength to neutralized films, which lack long-range organization. The long-range structure is better defined in films cast from acidic solutions in which strong electrostatic interactions cause rotational distortion around the chitosan chains. Plasticization by acetate counterions enhances long-range molecular organization and film flexibility. In contrast, Cl⁻ counterions act as a defect and impair the long-range organization by immobilizing hydration water. Molecular motion and proton exchange are restricted, resulting in brittle films despite the high moisture content
Performance and first measurements of the MAGIC stellar intensity interferometer
In recent years, a new generation of optical intensity interferometers has emerged, leveraging the existing infrastructure of Imaging Atmospheric Cherenkov Telescopes (IACTs). The MAGIC telescopes host the MAGIC-SII system (Stellar Intensity Interferometer), implemented to investigate the feasibility and potential of this technique on IACTs. After the first successful measurements in 2019, the system was upgraded and now features a real-time, dead-time-free, 4-channel, GPU-based correlator. These hardware modifications allow seamless transitions between MAGIC’s standard very-high-energy gamma-ray observations and optical interferometry measurements within seconds. We establish the feasibility and potential of employing IACTs as competitive optical Intensity Interferometers with minimal hardware adjustments. The measurement of a total of 22 stellar diameters are reported, 9 corresponding to reference stars with previous comparable measurements, and 13 with no prior measurements. A prospective implementation involving telescopes from the forthcoming Cherenkov Telescope Array Observatory’s Northern hemisphere array, such as the first prototype of its Large-Sized Telescopes, LST-1, is technically viable. This integration would significantly enhance the sensitivity of the current system and broaden the UV-plane coverage. This advancement would enable the system to achieve competitive sensitivity with the current generation of long-baseline optical interferometers over blue wavelengths
A hot mini-Neptune and a temperate, highly eccentric sub-Saturn around the bright K-dwarf TOI-2134
Funding: ACC and TGW acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. RDH is funded by the UK Science and Technology Facilities Council (STFC)’s Ernest Rutherford Fellowship (grant no. ST/V004735/1). SD is funded by the UK Science and Technology Facilities Council (grant no. ST/V004735/1). BSL is funded by a UK Science and Technology Facilities Council (STFC) studentship (ST/V506679/1). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement SCORE no. 851555).We present the characterisation of an inner mini-Neptune in a 9.2292005±0.0000063 day orbit and an outer mono-transiting sub-Saturn planet in a 95.50+0.36-0.25 day orbit around the moderately active, bright (mv = 8.9 mag) K5V star TOI-2134. Based on our analysis of five sectors of TESS data, we determine the radii of TOI-2134b and c to be 2.69±0.16 R⊕ for the inner planet and 7.27±0.42 R⊕ for the outer one. We acquired 111 radial-velocity spectra with HARPS-N and 108 radial-velocity spectra with SOPHIE. After careful periodogram analysis, we derive masses for both planets via Gaussian Process regression: 9.13+0.78-0.76 M⊕ for TOI-2134b and 41.89+7.69-7.83 M⊕ for TOI-2134c. We analysed the photometric and radial-velocity data first separately, then jointly. The inner planet is a mini-Neptune with density consistent with either a water-world or a rocky core planet with a low-mass H/He envelope. The outer planet has a bulk density similar to Saturn’s. The outer planet is derived to have a significant eccentricity of 0.67+0.05-0.06 from a combination of photometry and RVs. We compute the irradiation of TOI-2134c as 1.45±0.10 times the bolometric flux received by Earth, positioning it for part of its orbit in the habitable zone of its system. We recommend further RV observations to fully constrain the orbit of TOI-2134c. With an expected Rossiter-McLaughlin (RM) effect amplitude of 7.2±1.3 m-1, we recommend TOI-2134c for follow-up RM analysis to study the spin-orbit architecture of the system. We calculate the Transmission Spectroscopy Metric, and both planets are suitable for bright-mode NIRCam atmospheric characterisation.Publisher PDFPeer reviewe
- …