38 research outputs found
What DNA Can and Cannot Say: Perspectives of Immigrant Families about the Use of Genetic Testing in Immigration
Genetic technologies are being implemented in areas that extend beyond the field of medicine to address social and legal problems. An emerging example is the implementation of genetic testing in the family petitioning process in immigration policy. This use of genetic testing offers the potential benefits of reducing immigration fraud and making the process more efficient and accessible for immigrants, especially those without documentation. However, little is known about the positive or negative impacts of such testing on immigrant families and their communities.
This study collected empirical data through family interviews to understand the experiences and attitudes of individuals who have taken a DNA test to prove a family relationship for immigration purposes. Based on study results, we present a set of recommendations to improve the processes with which DNA testing is applied to immigration cases. We argue that DNA testing might serve as a useful tool for families who lack documentary evidence of a family relationship. However, testing might also reveal sensitive information, such as misattributed parentage, that can damage relationships and cause serious harm to beneficiaries, especially children. Petitioners should be provided with adequate information to form an understanding of the DNA test and its implementation as well as the positive and negative consequences from using it, in order to carefully assess whether DNA testing will help their case. We recommend that additional protections be put in place to safeguard children from the potential impacts of misattributed parentage or disclosure of hidden social adoptions. This research provides empirical evidence to inform policy related to the use of genetic testing in immigration
Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution
The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape : A Large-Scale Genome-Wide Interaction Study
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape
Insulin Resistance Exacerbates Genetic Predisposition to Nonalcoholic Fatty Liver Disease in Individuals Without Diabetes
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149741/1/hep41353.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149741/2/hep41353_am.pd
Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits
Few genome-wide association studies (GWAS) account for environmental exposures, like smoking, potentially impacting the overall trait variance when investigating the genetic contribution to obesity-related traits. Here, we use GWAS data from 51,080 current smokers and 190,178 nonsmokers (87% European descent) to identify loci influencing BMI and central adiposity, measured as waist circumference and waist-to-hip ratio both adjusted for BMI. We identify 23 novel genetic loci, and 9 loci with convincing evidence of gene-smoking interaction (GxSMK) on obesity-related traits. We show consistent direction of effect for all identified loci and significance for 18 novel and for 5 interaction loci in an independent study sample. These loci highlight novel biological functions, including response to oxidative stress, addictive behaviour, and regulatory functions emphasizing the importance of accounting for environment in genetic analyses. Our results suggest that tobacco smoking may alter the genetic susceptibility to overall adiposity and body fat distribution.Peer reviewe
Correction: The Influence of Age and Sex on Genetic Associations with Adult Body Size and Shape:A Large-Scale Genome-Wide Interaction Study (vol 11, e1005378, 2015)
The arcOGEN Consortium should be listed as an author of this article. They contributed to the genome-wide association study results presented in this work. They should be listed in the author byline at position 292 and affiliated with The Arthritis Research UK Osteoarthritis Genetics Consortium. They should also be included in the footnote designating consortia which is underneath the author affiliation list in the PDF version of the article, and in the S2 Text. Please view the correct S2 Text below, containing correct consortia members
Genetic Testing in Immigration for Family Reunification: Ethical, Legal and Social Implications
Thesis (Ph.D.)--University of Washington, 2012This body of work addresses the ethical, legal and social implications of using genetic testing as part of US immigration procedures for family reunification. Last year, approximately two-thirds of immigrants who came to the US as legal permanent residents were family petitioned under the family reunification provision. Under this provision, a petitioner, who must be a US citizen or permanent resident, petitions to the US Citizenship and Immigration Services (USCIS) to bring his or her immediate family members (spouse, children, parents or siblings) to the US. As part of the application process, the petitioner is required to show proof of the alleged family relationships claimed in the petition. This is typically done through documentation (e.g. birth certificates). But when documents are lacking or insufficient, or fraud is suspected, US immigration officials may suggest DNA testing (parentage or sibling testing) as a way to verify family relationships. In the past several years, DNA testing has become more frequent in immigration procedures, but the impact such testing may have on immigrants, their families or their communities is not clear. The objective of this study was to explore the positive and negative effects DNA testing may have on immigrant families, particularly regarding how test results might impact family relationships, social adaptability, and psychological well-being. This study incorporated interviews with immigrant families to (1) understand their experiences with DNA testing, and to (2) learn their opinions about the potential positive and negative effects of using DNA testing to prove alleged family relationships in immigration. Results from this research were used to develop educational materials including (a) an informational brochure for immigrants planning to petition for a family member under family reunification provision, and (b) an ethical "points-to-consider" document to inform policy-makers, immigration lawyers, advocates and immigrant communities about the study findings and the implications of using DNA testing in immigration for family reunification