188 research outputs found
Multiplex Cytological Profiling Assay to Measure Diverse Cellular States
Computational methods for image-based profiling are under active development, but their success hinges on assays that can capture a wide range of phenotypes. We have developed a multiplex cytological profiling assay that “paints the cell” with as many fluorescent markers as possible without compromising our ability to extract rich, quantitative profiles in high throughput. The assay detects seven major cellular components. In a pilot screen of bioactive compounds, the assay detected a range of cellular phenotypes and it clustered compounds with similar annotated protein targets or chemical structure based on cytological profiles. The results demonstrate that the assay captures subtle patterns in the combination of morphological labels, thereby detecting the effects of chemical compounds even though their targets are not stained directly. This image-based assay provides an unbiased approach to characterize compound- and disease-associated cell states to support future probe discovery
An image analysis toolbox for high-throughput C. elegans assays
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available through the open-source CellProfiler project and enables objective scoring of whole-worm high-throughput image-based assays of C. elegans for the study of diverse biological pathways that are relevant to human disease.National Institutes of Health (U.S.) (U54 EB005149
Metadata management for high content screening in OMERO
High content screening (HCS) experiments create a classic data management challenge—multiple, large sets of heterogeneous structured and unstructured data, that must be integrated and linked to produce a set of “final” results. These different data include images, reagents, protocols, analytic output, and phenotypes, all of which must be stored, linked and made accessible for users, scientists, collaborators and where appropriate the wider community. The OME Consortium has built several open source tools for managing, linking and sharing these different types of data. The OME Data Model is a metadata specification that supports the image data and metadata recorded in HCS experiments. Bio-Formats is a Java library that reads recorded image data and metadata and includes support for several HCS screening systems. OMERO is an enterprise data management application that integrates image data, experimental and analytic metadata and makes them accessible for visualization, mining, sharing and downstream analysis. We discuss how Bio-Formats and OMERO handle these different data types, and how they can be used to integrate, link and share HCS experiments in facilities and public data repositories. OME specifications and software are open source and are available at https://www.openmicroscopy.org
Making microscopy count: quantitative light microscopy of dynamic processes in living plants
First published: April 2016This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Cell theory has officially reached 350 years of age as the first use of the word ‘cell’ in a biological context can be traced to a description of plant material by Robert Hooke in his historic publication “Micrographia: or some physiological definitions of minute bodies”. The 2015 Royal Microscopical Society Botanical Microscopy meeting was a celebration of the streams of investigation initiated by Hooke to understand at the sub-cellular scale how plant cell function and form arises. Much of the work presented, and Honorary Fellowships awarded, reflected the advanced application of bioimaging informatics to extract quantitative data from micrographs that reveal dynamic molecular processes driving cell growth and physiology. The field has progressed from collecting many pixels in multiple modes to associating these measurements with objects or features that are meaningful biologically. The additional complexity involves object identification that draws on a different type of expertise from computer science and statistics that is often impenetrable to biologists. There are many useful tools and approaches being developed, but we now need more inter-disciplinary exchange to use them effectively. In this review we show how this quiet revolution has provided tools available to any personal computer user. We also discuss the oft-neglected issue of quantifying algorithm robustness and the exciting possibilities offered through the integration of physiological information generated by biosensors with object detection and tracking
Semi-convolutional operators for instance segmentation
Object detection and instance segmentation are dominated by region-based methods such as Mask RCNN. However, there is a growing interest in reducing these problems to pixel labeling tasks, as the latter could be more efficient, could be integrated seamlessly in image-to-image network architectures as used in many other tasks, and could be more accurate for objects that are not well approximated by bounding boxes. In this paper we show theoretically and empirically that constructing dense pixel embeddings that can separate object instances cannot be easily achieved using convolutional operators. At the same time, we show that simple modifications, which we call semi-convolutional, have a much better chance of succeeding at this task. We use the latter to show a connection to Hough voting as well as to a variant of the bilateral kernel that is spatially steered by a convolutional network. We demonstrate that these operators can also be used to improve approaches such as Mask RCNN, demonstrating better segmentation of complex biological shapes and PASCAL VOC categories than achievable by Mask RCNN alone
Chemical address tags of fluorescent bioimaging probes
Chemical address tags can be defined as specific structural features shared by a set of bioimaging probes having a predictable influence on cell-associated visual signals obtained from these probes. Here, using a large image dataset acquired with a high content screening instrument, machine vision and cheminformatics analysis have been applied to reveal chemical address tags. With a combinatorial library of fluorescent molecules, fluorescence signal intensity, spectral, and spatial features characterizing each one of the probes' visual signals were extracted from images acquired with the three different excitation and emission channels of the imaging instrument. With multivariate regression, the additive contribution from each one of the different building blocks of the bioimaging probes toward each measured, cell-associated image-based feature was calculated. In this manner, variations in the chemical features of the molecules were associated with the resulting staining patterns, facilitating quantitative, objective analysis of chemical address tags. Hierarchical clustering and paired image-cheminformatics analysis revealed key structure–property relationships amongst many building blocks of the fluorescent molecules. The results point to different chemical modifications of the bioimaging probes that can exert similar (or different) effects on the probes' visual signals. Inspection of the clustered structures suggests intramolecular charge migration or partial charge distribution as potential mechanistic determinants of chemical address tag behavior. © 2010 International Society for Advancement of CytometryPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71379/1/20847_ftp.pd
STSE: Spatio-Temporal Simulation Environment Dedicated to Biology
<p>Abstract</p> <p>Background</p> <p>Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers.</p> <p>Results</p> <p>The Spatio-Temporal Simulation Environment (STSE) is a set of <it>open-source </it>tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to <it>digitize, represent, analyze</it>, and <it>mathematically model </it>spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from <url>http://www.stse-software.org/</url>. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and workflow. We demonstrate it's usefulness using the example of a signaling cascade leading to formation of a morphological gradient of Fus3 within the cytoplasm of the mating yeast cell <it>Saccharomyces cerevisiae</it>.</p> <p>Conclusions</p> <p>STSE is an efficient and powerful novel platform, designed for computational handling and evaluation of microscopic images. It allows for an uninterrupted workflow including digitization, representation, analysis, and mathematical modeling. By providing the means to relate the simulation to the image data it allows for systematic, image driven model validation or rejection. STSE can be scripted and extended using the Python language. STSE should be considered rather as an API together with workflow guidelines and a collection of GUI tools than a stand alone application. The priority of the project is to provide an easy and intuitive way of extending and customizing software using the Python language.</p
Reverse Phase Protein Arrays elucidate mechanisms-of-action and phenotypic response in 2D and 3D models
The development of new 2D and 3D phenotypic screening assays combined with high-throughput genomic and proteomic technologies are well placed to advance a new era of molecular pathway informed Phenotypic Drug Discovery. We describe the application of Reverse Phase Protein Array (RPPA) technology to elucidate the mechanism-of-action of small molecules at the post-translational pathway level. We propose that profiling of phenotypic hits and lead molecules in increasingly more complex 3D in vitro and ex vivo models at the post-translational pathway network level represents an effective strategy to both triage and progress the preclinical development of phenotypic screening hits
A Bayesian method for inferring quantitative information from FRET data
<p>Abstract</p> <p>Background</p> <p>Understanding biological networks requires identifying their elementary protein interactions and establishing the timing and strength of those interactions. Fluorescence microscopy and Förster resonance energy transfer (FRET) have the potential to reveal such information because they allow molecular interactions to be monitored in living cells, but it is unclear how best to analyze FRET data. Existing techniques differ in assumptions, manipulations of data and the quantities they derive. To address this variation, we have developed a versatile Bayesian analysis based on clear assumptions and systematic statistics.</p> <p>Results</p> <p>Our algorithm infers values of the FRET efficiency and dissociation constant, <it>K<sub>d</sub></it>, between a pair of fluorescently tagged proteins. It gives a posterior probability distribution for these parameters, conveying more extensive information than single-value estimates can. The width and shape of the distribution reflects the reliability of the estimate and we used simulated data to determine how measurement noise, data quantity and fluorophore concentrations affect the inference. We are able to show why varying concentrations of donors and acceptors is necessary for estimating <it>K<sub>d</sub></it>. We further demonstrate that the inference improves if additional knowledge is available, for example of the FRET efficiency, which could be obtained from separate fluorescence lifetime measurements.</p> <p>Conclusions</p> <p>We present a general, systematic approach for extracting quantitative information on molecular interactions from FRET data. Our method yields both an estimate of the dissociation constant and the uncertainty associated with that estimate. The information produced by our algorithm can help design optimal experiments and is fundamental for developing mathematical models of biochemical networks.</p
- …
