11 research outputs found

    Primary oral manifestation of Langerhans cell histiocytosis refractory to conventional therapy but susceptible to BRAF-specific treatment: a case report and review of the literature

    Get PDF
    Langerhans cell histiocytosis (LCH) is a diagnostic and therapeutic challenge. We report on a rare case of its primary oral manifestation that was treated successfully with the BRAF-specific agent, vemurafenib, after insufficient standard LCH treatment. This case underlines the importance of proper diagnosis and the evaluation of targeted therapy as a valuable tool in LCH treatment. Furthermore, the close collaboration of surgeons, oncologists, and dentists is mandatory to ensure adequate treatment, restore the stomatognathic system in debilitating post-treatment situations, improve quality of life, and ensure effective disease control in infants and young patients

    Sarcoma treatment in the era of molecular medicine

    Get PDF
    Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.Peer reviewe

    Other (Non-CNS/Testicular) Extramedullary Localizations of Childhood Relapsed Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma—A Report from the ALL-REZ Study Group

    No full text
    Children with other extramedullary relapse of acute lymphoblastic leukemia are currently poorly characterized. We aim to assess the prevalence and the clinical, therapeutic and prognostic features of extramedullary localizations other than central nervous system or testis in children with relapse of acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LBL) treated on a relapsed ALL protocol. Patients and Methods: Patients with relapse of ALL and LBL, treated according to the multicentric ALL-REZ BFM trials between 1983 and 2015, were analyzed for other extramedullary relapse (OEMR) of the disease regarding clinical features, treatment and outcome. Local treatment/irradiation has been recommended on an individual basis and performed only in a minority of patients. Results: A total of 132 out of 2323 (5.6%) patients with ALL relapse presented with an OEMR (combined bone marrow relapse n = 78; isolated extramedullary relapse n = 54). Compared to the non-OEMR group, patients with OEMR had a higher rate of T-immunophenotype (p < 0.001), a higher rate of LBL (p < 0.001) and a significantly different distribution of time to relapse, i.e., more very early and late relapses compared to the non-OEMR group (p = 0.01). Ten-year probabilities of event-free survival (pEFS) and overall survival (pOS) in non-OEMR vs. OEMR were 0.38 ± 0.01 and 0.32 ± 0.04 (p = 0.0204) vs. 0.45 ± 0.01 and 0.37 ± 0.04 (p = 0.0112), respectively. OEMRs have been classified into five subgroups according to the main affected compartment: lymphatic organs (n = 32, 10y-pEFS 0.50 ± 0.09), mediastinum (n = 35, 10y-pEFS 0.11 ± 0.05), bone (n = 12, 0.17 ± 0.11), skin and glands (n = 21, 0.32 ± 0.11) and other localizations (n = 32, 0.41 ± 0.09). Patients with OEMR and T-lineage ALL/LBL showed a significantly worse 10y-pEFS (0.15 ± 0.04) than those with B-Precursor-ALL (0.49 ± 0.06, p < 0.001). Stratified into standard risk (SR) and high risk (HR) groups, pEFS and pOS of OEMR subgroups were in the expected range whereas the mediastinal subgroup had a significantly worse outcome. Subsequent relapses involved more frequently the bone marrow (58.4%) than isolated extramedullary compartments (41.7%). In multivariate Cox regression, OEMR confers an independent prognostic factor for inferior pEFS and pOS. Conclusion: OEMR is adversely related to prognosis. However, the established risk classification can be applied for all subgroups except mediastinal relapses requiring treatment intensification. Generally, isolated OEMR of T-cell-origin needs an intensified treatment including allogeneic stem cell transplantation (HSCT) as a curative approach independent from time to relapse. Local therapy such as surgery and irradiation may be of benefit in selected cases. The indication needs to be clarified in further investigations

    IL6 secreted by Ewing sarcoma tumor microenvironment confers anti-apoptotic and cell-disseminating paracrine responses in Ewing sarcoma cells

    Get PDF
    BACKGROUND: The prognosis of patients with Ewing sarcoma (ES) has improved over the course of the last decades. However, those patients suffering from metastatic and recurrent ES still have only poor chances of survival and require new therapeutic approaches. Interleukin-6 (IL6) is a pleiotropic cytokine expressed by immune cells and a great variety of cancer cells. It induces inflammatory responses, enhances proliferation and inhibits apoptosis in cancer cells, thereby promoting chemoresistance. METHODS: We investigated expression of IL6, its receptors and the IL6 signal transduction pathway in ES tumor samples and cell lines applying reverse transcriptase PCR, immunoblot and immunohistochemistry. The impact of IL6 on cell viability and apoptosis in ES cell lines was analyzed by MTT and propidium iodide staining, migration assessed by chorioallantoic membrane (CAM) assay. RESULTS: Immunohistochemistry proved IL6 expression in the stroma of ES tumor samples. IL6 receptor subunits IL6R and IL6ST were expressed on the surface of ES cells. Treatment of ES cells with rhIL6 resulted in phosphorylation of STAT3. rhIL6 protected ES cells from serum starvation-induced apoptosis and promoted migration. IL6 blood serum levels were elevated in a subgroup of ES patients with poor prognosis. CONCLUSIONS: These data suggest that IL6 contributes to ES tumor progression by increasing resistance to apoptosis in conditions of cellular stress, such as serum starvation, and by promotion of metastasis

    Other (Non-CNS/Testicular) Extramedullary Localizations of Childhood Relapsed Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma-A Report from the ALL-REZ Study Group

    No full text
    Children with other extramedullary relapse of acute lymphoblastic leukemia are currently poorly characterized. We aim to assess the prevalence and the clinical, therapeutic and prognostic features of extramedullary localizations other than central nervous system or testis in children with relapse of acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LBL) treated on a relapsed ALL protocol. PATIENTS AND METHODS Patients with relapse of ALL and LBL, treated according to the multicentric ALL-REZ BFM trials between 1983 and 2015, were analyzed for other extramedullary relapse (OEMR) of the disease regarding clinical features, treatment and outcome. Local treatment/irradiation has been recommended on an individual basis and performed only in a minority of patients. RESULTS A total of 132 out of 2323 (5.6%) patients with ALL relapse presented with an OEMR (combined bone marrow relapse n = 78; isolated extramedullary relapse n = 54). Compared to the non-OEMR group, patients with OEMR had a higher rate of T-immunophenotype (p < 0.001), a higher rate of LBL (p < 0.001) and a significantly different distribution of time to relapse, i.e., more very early and late relapses compared to the non-OEMR group (p = 0.01). Ten-year probabilities of event-free survival (pEFS) and overall survival (pOS) in non-OEMR vs. OEMR were 0.38 ± 0.01 and 0.32 ± 0.04 (p = 0.0204) vs. 0.45 ± 0.01 and 0.37 ± 0.04 (p = 0.0112), respectively. OEMRs have been classified into five subgroups according to the main affected compartment: lymphatic organs (n = 32, 10y-pEFS 0.50 ± 0.09), mediastinum (n = 35, 10y-pEFS 0.11 ± 0.05), bone (n = 12, 0.17 ± 0.11), skin and glands (n = 21, 0.32 ± 0.11) and other localizations (n = 32, 0.41 ± 0.09). Patients with OEMR and T-lineage ALL/LBL showed a significantly worse 10y-pEFS (0.15 ± 0.04) than those with B-Precursor-ALL (0.49 ± 0.06, p < 0.001). Stratified into standard risk (SR) and high risk (HR) groups, pEFS and pOS of OEMR subgroups were in the expected range whereas the mediastinal subgroup had a significantly worse outcome. Subsequent relapses involved more frequently the bone marrow (58.4%) than isolated extramedullary compartments (41.7%). In multivariate Cox regression, OEMR confers an independent prognostic factor for inferior pEFS and pOS. CONCLUSION OEMR is adversely related to prognosis. However, the established risk classification can be applied for all subgroups except mediastinal relapses requiring treatment intensification. Generally, isolated OEMR of T-cell-origin needs an intensified treatment including allogeneic stem cell transplantation (HSCT) as a curative approach independent from time to relapse. Local therapy such as surgery and irradiation may be of benefit in selected cases. The indication needs to be clarified in further investigations

    Vemurafenib for Refractory Multisystem Langerhans Cell Histiocytosis in Children: An International Observational Study

    No full text
    International audiencePURPOSE:Off-label use of vemurafenib (VMF) to treat BRAFV600E mutation-positive, refractory, childhood Langerhans cell histiocytosis (LCH) was evaluated.PATIENTS AND METHODS:Fifty-four patients from 12 countries took VMF 20 mg/kg/d. They were classified according to risk organ involvement: liver, spleen, and/or blood cytopenia. The main evaluation criteria were adverse events (Common Terminology Criteria for Adverse Events [version 4.3]) and therapeutic responses according to Disease Activity Score.RESULTS:LCH extent was distributed as follows: 44 with positive and 10 with negative risk organ involvement. Median age at diagnosis was 0.9 years (range, 0.1 to 6.5 years). Median age at VMF initiation was 1.8 years (range, 0.18 to 14 years), with a median follow-up of 22 months (range, 4.3 to 57 months), whereas median treatment duration was 13.9 months (for 855 patient-months). At 8 weeks, 38 complete responses and 16 partial responses had been achieved, with the median Disease Activity Score decreasing from 7 at diagnosis to 0 (P < .001). Skin rash, the most frequent adverse event, affected 74% of patients. No secondary skin cancer was observed. Therapeutic plasma VMF concentrations (range, 10 to 20 mg/L) seemed to be safe and effective. VMF discontinuation for 30 patients led to 24 LCH reactivations. The blood BRAFV600E allele load, assessed as circulating cell-free DNA, decreased after starting VMF but remained positive (median, 3.6% at diagnosis, and 1.6% during VMF treatment; P < .001) and was associated with a higher risk of reactivation at VMF discontinuation. None of the various empirical therapies (hematopoietic stem-cell transplantation, cladribine and cytarabine, anti-MEK agent, vinblastine, etc) used for maintenance could eradicate the BRAFV600E clone.CONCLUSION:VMF seemed safe and effective in children with refractory BRAFV600E-positive LCH. Additional studies are needed to find effective maintenance therapy approaches

    Interferon-γ Sensitizes Resistant Ewing’s Sarcoma Cells to Tumor Necrosis Factor Apoptosis-Inducing Ligand-Induced Apoptosis by Up-Regulation of Caspase-8 Without Altering Chemosensitivity

    No full text
    Ewing’s sarcoma cells are highly susceptible to apoptosis via tumor necrosis factor apoptosis-inducing ligand (TRAIL). Resistance to TRAIL has been linked to deficient expression of caspase-8 in vitro. Here, we report on the status of caspase-8 expression in tumors from patients with Ewing’s sarcoma, the effect of interferon-γ on caspase-8 expression and apoptosis, and the role of caspase-8 for TRAIL- and chemotherapy-mediated apoptosis in Ewing’s sarcoma. Using immunohistochemistry, we show that low expression of caspase-8 is seen in about 24% of tumors. Interferon-γ induces expression of caspase-8 at concentrations achievable in humans and sensitizes cells to TRAIL. Transfection of wild type but not mutant caspase-8 into caspase-8-deficient Ewing’s sarcoma cells restored sensitivity to TRAIL, indicating that up-regulation of caspase-8 is sufficient to restore TRAIL sensitivity. In contrast, no role for caspase-8 in chemotherapy-induced apoptosis was identified, because 1) transfection of caspase-8 or treatment with interferon-γ did not alter the sensitivity of caspase-8-deficient cells to chemotherapeutics, 2) application of chemotherapy did not select for caspase-8-negative tumor cells in vivo, and 3) the caspase-8 status of tumors did not influence survival after chemotherapy-based protocols. In conclusion, our data provide a rationale for the inclusion of interferon-γ in upcoming clinical trials with TRAIL
    corecore