388 research outputs found
Coherent phenomena in mesoscopic systems
A mesoscopic system of cylindrical geometry made of a metal or a
semiconductor is shown to exhibit features of a quantum coherent state. It is
shown that magnetostatic interaction can play an important role in mesoscopic
systems leading to an ordered ground state. The temperature below the
system exhibits long-range order is determined. The self-consistent mean field
approximation of the magnetostatic interaction is performed giving the
effective Hamiltonian from which the self-sustaining currents can be obtained.
The relation of quantum coherent state in mesoscopic cylinders to other
coherent systems like superconductors is discussed.Comment: REVTeX, 4 figures, in print in Supercond. Sci. Techno
Possibility of long-range order in clean mesoscopic cylinders
A microscopic Hamiltonian of the magnetostatic interaction is discussed. This
long-range interaction can play an important role in mesoscopic systems leading
to an ordered ground state.
The self-consistent mean field approximation of the magnetostatic interaction
is performed to give an effective Hamiltonian from which the spontaneous,
self-sustaining currents can be obtained.
To go beyond the mean field approximation the mean square fluctuation of the
total momentum is calculated and its influence on self-sustaining currents in
mesoscopic cylinders with quasi-1D and quasi-2D conduction is considered. Then,
by the use of the microscopic Hamiltonian of the magnetostatic interaction for
a set of stacked rings, the problem of long-range order is discussed. The
temperature below which the system is in an ordered state is
determined.Comment: 14 pages, REVTeX, 5 figures, in print in Phys. Rev.
Electromagnetic Calorimeter for HADES
We propose to build the Electromagnetic calorimeter for the HADES di-lepton
spectrometer. It will enable to measure the data on neutral meson production
from nucleus-nucleus collisions, which are essential for interpretation of
dilepton data, but are unknown in the energy range of planned experiments (2-10
GeV per nucleon). The calorimeter will improve the electron-hadron separation,
and will be used for detection of photons from strange resonances in elementary
and HI reactions.
Detailed description of the detector layout, the support structure, the
electronic readout and its performance studied via Monte Carlo simulations and
series of dedicated test experiments is presented.
The device will cover the total area of about 8 m^2 at polar angles between
12 and 45 degrees with almost full azimuthal coverage. The photon and electron
energy resolution achieved in test experiments amounts to 5-6%/sqrt(E[GeV])
which is sufficient for the eta meson reconstruction with S/B ratio of 0.4% in
Ni+Ni collisions at 8 AGeV. A purity of the identified leptons after the hadron
rejection, resulting from simulations based on the test measurements, is better
than 80% at momenta above 500 MeV/c, where time-of-flight cannot be used.Comment: 40 pages, 38 figures version2 - the time schedule added, information
about PMTs in Sec.III update
Spin measurements for 147Sm+n resonances: Further evidence for non-statistical effects
We have determined the spins J of resonances in the 147Sm(n,gamma) reaction
by measuring multiplicities of gamma-ray cascades following neutron capture.
Using this technique, we were able to determine J values for all but 14 of the
140 known resonances below En = 1 keV, including 41 firm J assignments for
resonances whose spins previously were either unknown or tentative. These new
spin assignments, together with previously determined resonance parameters,
allowed us to extract separate level spacings and neutron strength functions
for J = 3 and 4 resonances. Furthermore, several statistical test of the data
indicate that very few resonances of either spin have been missed below En =
700eV. Because a non-statistical effect recently was reported near En = 350 eV
from an analysis of 147Sm(n,alpha) data, we divided the data into two regions;
0 < En < 350 eV and 350 < En < 700 eV. Using neutron widths from a previous
measurement and published techniques for correcting for missed resonances and
for testing whether data are consistent with a Porter-Thomas distribution, we
found that the reduced-neutron-width distribution for resonances below 350 eV
is consistent with the expected Porter-Thomas distribution. On the other hand,
we found that reduced-neutron-width data in the 350 < En < 700 eV region are
inconsistent with a Porter-Thomas distribution, but in good agreement with a
chi-squared distribution having two or more degrees of freedom. We discuss
possible explanations for these observed non-statistical effects and their
possible relation to similar effects previously observed in other nuclides.Comment: 40 pages, 13 figures, accepted by Phys. Rev.
The s Process: Nuclear Physics, Stellar Models, Observations
Nucleosynthesis in the s process takes place in the He burning layers of low
mass AGB stars and during the He and C burning phases of massive stars. The s
process contributes about half of the element abundances between Cu and Bi in
solar system material. Depending on stellar mass and metallicity the resulting
s-abundance patterns exhibit characteristic features, which provide
comprehensive information for our understanding of the stellar life cycle and
for the chemical evolution of galaxies. The rapidly growing body of detailed
abundance observations, in particular for AGB and post-AGB stars, for objects
in binary systems, and for the very faint metal-poor population represents
exciting challenges and constraints for stellar model calculations. Based on
updated and improved nuclear physics data for the s-process reaction network,
current models are aiming at ab initio solution for the stellar physics related
to convection and mixing processes. Progress in the intimately related areas of
observations, nuclear and atomic physics, and stellar modeling is reviewed and
the corresponding interplay is illustrated by the general abundance patterns of
the elements beyond iron and by the effect of sensitive branching points along
the s-process path. The strong variations of the s-process efficiency with
metallicity bear also interesting consequences for Galactic chemical evolution.Comment: 53 pages, 20 figures, 3 tables; Reviews of Modern Physics, accepte
Measurement of Through-Going Particle Momentum By Means Of Multiple Scattering With The ICARUS T600 TPC
The ICARUS collaboration has demonstrated, following the operation of a 600
ton (T600) detector at shallow depth, that the technique based on liquid Argon
TPCs is now mature. The study of rare events, not contemplated in the Standard
Model, can greatly benefit from the use of this kind of detectors. In
particular, a deeper understanding of atmospheric neutrino properties will be
obtained thanks to the unprecedented quality of the data ICARUS provides.
However if we concentrate on the T600 performance, most of the
charged current sample will be partially contained, due to the reduced
dimensions of the detector. In this article, we address the problem of how well
we can determine the kinematics of events having partially contained tracks.
The analysis of a large sample of atmospheric muons collected during the T600
test run demonstrate that, in case the recorded track is at least one meter
long, the muon momentum can be reconstructed by an algorithm that measures the
Multiple Coulomb Scattering along the particle's path. Moreover, we show that
momentum resolution can be improved by a factor two using an algorithm based on
the Kalman Filtering technique
High-accuracy determination of the U 238 / U 235 fission cross section ratio up to â1 GeV at n-TOF at CERN
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articleâs title, journal citation, and DOIThe U238 to U235 fission cross section ratio has been determined at n-TOF up to â1 GeV, with two different detection systems, in different geometrical configurations. A total of four datasets has been collected and compared. They are all consistent to each other within the relative systematic uncertainty of 3-4%. The data collected at n-TOF have been suitably combined to yield a unique fission cross section ratio as a function of neutron energy. The result confirms current evaluations up to 200 MeV. Good agreement is also observed with theoretical calculations based on the INCL++/Gemini++ combination up to the highest measured energy. The n-TOF results may help solve a long-standing discrepancy between the two most important experimental datasets available so far above 20 MeV, while extending the neutron energy range for the first time up to â1 GeV.Peer reviewedFinal Published versio
Fission-fragment total kinetic energy and mass yields for neutron-induced fission of 235
The average Total Kinetic Energy (TKE) release and fission-fragment yields in neutron-induced fission of 235U and 238U was measured using a Frisch-gridded ionization chamber. These observables are important nuclear data quantites that are relevant to applications and for informing the next generation of fission models. The measurements were performed a the Los Alamos Neutron Science Center and cover En = 200 keV â 30 MeV. The double-energy (2E) method was used to determine the fission-fragment yields and two methods of correcting for prompt-neutron emission were explored. The results of this study are correlated mass and TKE data
Verification of electromagnetic calorimeter concept for the HADES spectrometer
The HADES spectrometer currently operating on the beam of SIS18 accelerator in GSI will be moved to a new position in the CBM cave of the future FAIR complex. Electromagnetic calorimeter (ECAL) will enable the HADES@FAIR experiment to measure data on neutral meson production in heavy ion collisions at the energy range of 2-10 A GeVon the beam of the new accelerator SIS100. Calorimeter will be based on 978 massive lead glass modules read out by photomultipliers and a novel front-end electronics. Secondary gamma beam with energies ranging from 81 MeV up to 1399 MeV from MAMI-C Mainz facility was used to verify selected technical solutions. Relative energy resolution was measured using modules with three different types of photomultipliers. Two types of developed front-end electronics as well as energy leakage between neighbouring modules under parallel and declined gamma beams were studied in detail
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
- âŠ